Multi-bumps solutions for the nonlinear Schrodinger equation under a slowing decaying potential

被引:2
作者
Bao, Meiqi [1 ]
Guo, Hui [1 ,2 ,3 ]
Wang, Tao [1 ]
机构
[1] Hunan Univ Sci & Technol, Coll Math & Comp Sci, Xiangtan, Hunan, Peoples R China
[2] Hunan Univ Humanities, Dept Math & Finance, Sci & Technol, Loudi, Hunan, Peoples R China
[3] Hunan Univ Humanities Sci & Technol, Dept Math & Finance, Loudi 417000, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Miranda theorem; multi-bumps solutions; nonlinear Schrodinger equation; reduction method; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; EXISTENCE; STATES;
D O I
10.1002/mma.9821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following nonlinear Schrodinger equation: -Delta u + V(vertical bar x vertical bar)u = Q(vertical bar x vertical bar)u(p), u > 0 in R-N, u is an element of H-1 (R-N), (0.1) where N >= 3, p is an element of (1, N+2/N-2), and V, Q have the algebraical decay that V(vertical bar x vertical bar) = V-0 + a/vertical bar x vertical bar(m) + O (1/vertical bar x vertical bar(m+kappa)), Q(vertical bar x vertical bar) = Q(0) + b/vertical bar x vertical bar n + O (1/vertical bar x vertical bar(n+theta)), as vertical bar x vertical bar -> infinity, where V-0, Q(0,) kappa, theta, a > 0, b is an element of R, and m, n > 1. By introducing the Miranda theorem, via the Lyapunov-Schmidt finite-dimensional reduction method, we construct infinitely many multi-bumps solutions of (0.1), whose maximum points of bumps lie on the top and bottom circles of a cylinder provided m < n, b > 0, or b <= 0. This result complements and extends the ones in [Duan and Musso, JDE, 2022] for a slow decaying rate of the potential function at infinity from m > max {2, 4/p-1} to m > 1.
引用
收藏
页码:4430 / 4448
页数:19
相关论文
共 26 条
[1]   Ground states for irregular and indefinite superlinear Schrodinger equations [J].
Ackermann, Nils ;
Chagoya, Julian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) :5180-5201
[2]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part I [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (03) :427-466
[3]  
Ambrosetti A., 2006, MATHRM MATHBB R AMP
[4]  
[Anonymous], 2003, Courant Lecture Notes
[5]   Infinitely many positive solutions for nonlinear equations with non-symmetric potentials [J].
Ao, Weiwei ;
Wei, Juncheng .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 51 (3-4) :761-798
[6]   On the existence of a positive solution of semilinear elliptic equations in unbounded domains [J].
Bahri, A ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03) :365-413
[7]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[8]  
Cao D, 2021, CAM ST AD M, P1, DOI 10.1017/9781108872638
[9]   Solutions with multiple peaks for nonlinear elliptic equations [J].
Cao, DM ;
Noussair, ES ;
Yan, SS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :235-264
[10]  
Chen H., 2023, APPL ANAL, V102, P1