A classroom facial expression recognition method based on attention mechanism

被引:0
|
作者
Jin, Huilong [1 ,2 ]
Du, Ruiyan [1 ]
Wen, Tian [1 ]
Zhao, Jia [1 ]
Shi, Lei [3 ]
Zhang, Shuang [1 ]
机构
[1] Hebei Normal Univ, Coll Engn, Shijiazhuang 050000, Hebei, Peoples R China
[2] Hebei Normal Univ, Vocat & Tech Coll, Shijiazhuang, Hebei, Peoples R China
[3] Guilin Univ Elect Technol, Guangxi Key Lab Trusted Software, Guilin, Peoples R China
关键词
Deep learning; classroom facial expression recognition; attention mechanism; activation function; dropout regularization;
D O I
10.3233/JIFS-235541
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compared with other facial expression recognition, classroom facial expression recognition should pay more attention to the feature extraction of a specific region to reflect the attention of students. However, most features are extracted with complete facial images by deep neural networks. In this paper, we proposed a new expression recognition based on attention mechanism, where more attention would be paid in the channel information which have much relationship with the expression classification instead of depending on all channel information. A new classroom expression classification has also been concluded with considering the concentration. Moreover, activation function is modified to reduce the number of parameters and computations, at the same time, dropout regularization is added after the pool layer to prevent overfitting of the model. The experiments show that the accuracy of our method named Ixception has an maximize improvement of 5.25% than other algorithms. It can well meet the requirements of the analysis of classroom concentration.
引用
收藏
页码:11873 / 11882
页数:10
相关论文
共 50 条
  • [1] Facial expression recognition based on facial part attention mechanism
    Zhong, Qiubo
    Fang, Baofu
    Wei, Shenbin
    Wang, Zaijun
    Zhang, Haoxiang
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (03)
  • [2] Facial Expression Recognition Network Based on Attention Mechanism
    Zhang W.
    Li P.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2022, 55 (07): : 706 - 713
  • [3] Facial Expression Recognition Based on Multiscale Features and Attention Mechanism
    Yao, Lisha
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2024, 58 (04) : 429 - 440
  • [4] Facial expression recognition based on attention mechanism and feature correlation
    Lan L.
    Liu Q.
    Lu S.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 48 (01): : 147 - 155
  • [5] Attention mechanism-based CNN for facial expression recognition
    Li, Jing
    Jin, Kan
    Zhou, Dalin
    Kubota, Naoyuki
    Ju, Zhaojie
    NEUROCOMPUTING, 2020, 411 : 340 - 350
  • [6] Lightweight facial expression recognition method based on attention mechanism and key region fusion
    Kong, Yinghui
    Ren, Zhaohan
    Zhang, Ke
    Zhang, Shuaitong
    Ni, Qiang
    Han, Jungong
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (06)
  • [7] Lightweight Facial Expression Recognition Method Based on Convolutional Attention
    Yin Pengbo
    Pan Weimin
    Zhang Haijun
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (12)
  • [8] Facial Expression Recognition Methods in the Wild Based on Fusion Feature of Attention Mechanism and LBP
    Liao, Jun
    Lin, Yuanchang
    Ma, Tengyun
    He, Songxiying
    Liu, Xiaofang
    He, Guotian
    SENSORS, 2023, 23 (09)
  • [9] Facial expression recognition based on strong attention mechanism and residual network
    Zhizhe Qian
    Jing Mu
    Feng Tian
    Zhiyu Gao
    Jie Zhang
    Multimedia Tools and Applications, 2023, 82 : 14287 - 14306
  • [10] Facial expression recognition based on strong attention mechanism and residual network
    Qian, Zhizhe
    Mu, Jing
    Tian, Feng
    Gao, Zhiyu
    Zhang, Jie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (09) : 14287 - 14306