WEAK OPTIMAL TRANSPORT WITH UNNORMALIZED KERNELS

被引:2
|
作者
Chone, Philippe [1 ]
Gozlan, Nathael [2 ]
Kramarz, Francis [3 ,4 ]
机构
[1] CREST, ENSAE, Inst Polytech Paris, Paris, France
[2] Univ Paris Cite, MAP5, CNRS, F-75006 Paris, France
[3] CREST, Inst Polytech Paris, ENSAE, Paris, France
[4] Uppsala Univ, Dept Econ, Uppsala, Sweden
基金
欧洲研究理事会;
关键词
optimal transport; weak optimal transport; duality; convex order; Strassen's theorem; PROBABILITY-MEASURES; REARRANGEMENT; COSTS;
D O I
10.1137/22M1501301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new variant of the weak optimal transport problem where mass is distributed from one space to the other through unnormalized kernels. We give sufficient conditions for primal attainment and prove a dual formula for this transport problem. We also obtain dual attainment conditions for some specific cost functions. As a byproduct, we obtain a transport characterization of the stochastic order defined by convex positively 1-homogenous functions, in the spirit of the Strassen theorem for convex domination.
引用
收藏
页码:6039 / 6092
页数:54
相关论文
共 50 条
  • [41] CHARACTERIZATION OF BARYCENTERS IN THE WASSERSTEIN SPACE BY AVERAGING OPTIMAL TRANSPORT MAPS
    Bigot, Jeremie
    Klein, Thierry
    ESAIM-PROBABILITY AND STATISTICS, 2018, 22 : 35 - 57
  • [42] Application of Optimal Transport to Exact Zoeppritz Equation AVA Inversion
    Huang, Guangtan
    Chen, Xiaohong
    Luo, Cong
    Li, Xiangyang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (09) : 1337 - 1341
  • [43] Cortically Based Optimal Transport
    Galeotti, Mattia
    Citti, Giovanna
    Sarti, Alessandro
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2022, 64 (09) : 1040 - 1057
  • [44] Optimal Transport for Domain Adaptation
    Courty, Nicolas
    Flamary, Remi
    Tuia, Devis
    Rakotomamonjy, Alain
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (09) : 1853 - 1865
  • [45] Hierarchical clustering with optimal transport
    Chakraborty, Saptarshi
    Paul, Debolina
    Das, Swagatam
    STATISTICS & PROBABILITY LETTERS, 2020, 163
  • [46] Autoregressive optimal transport models
    Zhu, Changbo
    Mueller, Hans-Georg
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (03) : 1012 - 1033
  • [47] On the Hessian of the optimal transport potential
    Valdimarsson, Stefan Ingi
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2007, 6 (03) : 441 - 456
  • [48] Quantum optimal transport: an invitation
    Trevisan, Dario
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2025, 18 (01): : 347 - 360
  • [49] The Optimal Partial Transport Problem
    Figalli, Alessio
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (02) : 533 - 560
  • [50] On the Optimal Transport of Semiclassical Measures
    Lorenzo Zanelli
    Applied Mathematics & Optimization, 2016, 74 : 325 - 342