WEAK OPTIMAL TRANSPORT WITH UNNORMALIZED KERNELS

被引:2
|
作者
Chone, Philippe [1 ]
Gozlan, Nathael [2 ]
Kramarz, Francis [3 ,4 ]
机构
[1] CREST, ENSAE, Inst Polytech Paris, Paris, France
[2] Univ Paris Cite, MAP5, CNRS, F-75006 Paris, France
[3] CREST, Inst Polytech Paris, ENSAE, Paris, France
[4] Uppsala Univ, Dept Econ, Uppsala, Sweden
基金
欧洲研究理事会;
关键词
optimal transport; weak optimal transport; duality; convex order; Strassen's theorem; PROBABILITY-MEASURES; REARRANGEMENT; COSTS;
D O I
10.1137/22M1501301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new variant of the weak optimal transport problem where mass is distributed from one space to the other through unnormalized kernels. We give sufficient conditions for primal attainment and prove a dual formula for this transport problem. We also obtain dual attainment conditions for some specific cost functions. As a byproduct, we obtain a transport characterization of the stochastic order defined by convex positively 1-homogenous functions, in the spirit of the Strassen theorem for convex domination.
引用
收藏
页码:6039 / 6092
页数:54
相关论文
共 50 条
  • [1] Unnormalized optimal transport
    Gangbo, Wilfrid
    Li, Wuchen
    Osher, Stanley
    Puthawala, Michael
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 399
  • [2] STABILITY OF THE WEAK MARTINGALE OPTIMAL TRANSPORT PROBLEM
    Beiglboeck, Mathias
    Jourdain, Benjamin
    Margheriti, William
    Pammer, Gudmund
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (6B) : 5382 - 5412
  • [3] STABILITY OF MARTINGALE OPTIMAL TRANSPORT AND WEAK OPTIMAL TRANSPORT
    Backhoff-Veraguas, J.
    Pammer, G.
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (01) : 721 - 752
  • [4] Risk measures based on weak optimal transport
    Kupper, Michael
    Nendel, Max
    Sgarabottolo, Alessandro
    QUANTITATIVE FINANCE, 2025, 25 (02) : 163 - 180
  • [5] Applications of weak transport theory
    Backhoff-Veraguas, J.
    Pammer, G.
    BERNOULLI, 2022, 28 (01) : 370 - 394
  • [6] An optimal transport-based characterization of convex order
    Wiesel, Johannes
    Zhang, Erica
    DEPENDENCE MODELING, 2023, 11 (01):
  • [7] Classification and recognition of dynamical models: The role of phase, independent components, kernels, and optimal transport
    Bissacco, Alessandro
    Chiuso, Alessandro
    Soatto, Stefano
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (11) : 1958 - 1972
  • [8] A new class of costs for optimal transport planning
    Alibert, J-J
    Bouchitte, G.
    Champion, T.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (06) : 1229 - 1263
  • [9] THE DIRECTIONAL OPTIMAL TRANSPORT
    Nutz, Marcel
    Wang, Ruodu
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (02) : 1400 - 1420
  • [10] Quadratically Regularized Optimal Transport
    Lorenz, Dirk A.
    Manns, Paul
    Meyer, Christian
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03) : 1919 - 1949