Multiobjective coevolutionary training of Generative Adversarial Networks

被引:1
作者
Ripa, Guillermo [1 ]
Mautone, Agustin [1 ]
Vidal, Andres [1 ]
Nesmachnow, Sergio [1 ]
Toutouh, Jamal [2 ]
机构
[1] Univ Republica, Montevideo, Uruguay
[2] Univ Malaga, ITIS Software, Malaga, Spain
来源
PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION | 2023年
基金
欧盟地平线“2020”;
关键词
Generative Adversarial Networks; multiobjective optimization; co-evolutionary algorithms; image generation;
D O I
10.1145/3583133.3590626
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents a multiobjective evolutionary approach for coevolutionary training of Generative Adversarial Networks. The proposal applies an explicit multiobjective optimization approach based on Pareto ranking and non-dominated sorting over the co-evolutionary search implemented by the Lipizzaner framework, to optimize the quality and diversity of the generated synthetic data. Two functions are studied for evaluating diversity. The main results obtained for the handwritten digits generation problem show that the proposed multiobjective search is able to compute accurate and diverse solutions, improving over the standard Lipizzaner implementation.
引用
收藏
页码:319 / 322
页数:4
相关论文
共 11 条
[1]  
Arora S., 2018, P INT C LEARN REPR I, DOI 10.48550/arXiv.1706.08224
[2]  
Baioletti Marco, 2020, P GEN EV COMP C COMP
[3]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[4]  
Elfeki Mohamed, 2019, PR MACH LEARN RES, V97
[5]   Fundamental Technologies in Modern Speech Recognition [J].
Furui, Sadaoki ;
Deng, Li ;
Gales, Mark ;
Ney, Hermann ;
Tokuda, Keiichi .
IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (06) :16-17
[6]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[7]  
Hemberg E., 2021, ACM Trans. Evol. Learn. Optim, V1, P1, DOI [10.1145/3458845, DOI 10.1145/3458845]
[8]  
Su Jingwen, 2020, Hypervolgan: An efficient approach for gan with multi-objective training function
[9]   Evolutionary Generative Adversarial Networks [J].
Wang, Chaoyue ;
Xu, Chang ;
Yao, Xin ;
Tao, Dacheng .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (06) :921-934
[10]  
Wang Gengxing, 2018, DIGITAL IMAGE COMPUT