DKRF: Machine Learning with Optimised Feature Selection for Intrusion Detection

被引:0
|
作者
Madasamy, N. Senthil [1 ]
机构
[1] Dr Mahalingam Coll Engn & Technol, Dept CSE, Pollachi, India
关键词
Internet of things; intrusion detection; machine learning; particle swarm optimisation genetic algorithm; dynamic k-means random forest; DETECTION SYSTEM; INTERNET; CLASSIFIER;
D O I
10.32908/ahswn.v57.10485
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid development of IoT (Internet of Things) devices affords intruders to launch many attacks resulting in a security breach. Thus, a network IDS (Intrusion Detection System) is vital that assists in monitoring the network traffic for automatic intimation of abnormal events through alerts. It is also essential for securing a network as it permits detecting and responding to malicious traffic. The main benefit of IDS is to confirm that IT personnel is warned when any network intrusion or attacks occur. Though conventional research has attempted to achieve a better intrusion detection system, it lacked with respect for effective detection rate resulting in a higher false alarm rate. To solve this, the present study considers ML (Machine Learning) based methods as they can boost the accuracy and robustness of the system. Initially, the IoT data is clustered and fed into the proposed Optimised PSOGA (Particle Swarm Optimisation Genetic Algorithm) for feature selection. Its ability to search large spaces and better representation with effective data management having numerous features has made it suitable for selecting only the relevant features. Further, classification is performed, by the introduced DKRF (Dynamic K-means Random Forest), due to its assured convergence and flexibility in solving classification issues. These advantages, makes the proposed method to possess effective performance in detecting intrusions. This effectiveness is measured based on accuracy, FPR (False Positive Rate), precision, F-measure, and recall.
引用
收藏
页码:163 / 186
页数:24
相关论文
共 50 条
  • [1] INTRUSION DETECTION BASED ON MACHINE LEARNING AND FEATURE SELECTION
    Alaoui, Souad
    El Gonnouni, Amina
    Lyhyaoui, Abdelouahid
    MENDEL 2011 - 17TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING, 2011, : 199 - 206
  • [2] Network Intrusion Detection Leveraging Machine Learning and Feature Selection
    Ali, Arshid
    Shaukat, Shahtaj
    Tayyab, Muhammad
    Khan, Muazzam A.
    Khan, Jan Sher
    Arshad
    Ahmad, Jawad
    2020 IEEE 17TH INTERNATIONAL CONFERENCE ON SMART COMMUNITIES: IMPROVING QUALITY OF LIFE USING ICT, IOT AND AI (IEEEHONET 2020), 2020, : 49 - 53
  • [3] Lightweight Intrusion Detection Based on Hybrid Feature Selection Machine Learning
    Xia, Guoxin
    Zhao, Yanqiao
    Han, Chaohui
    Zhao, Xiaosong
    Zhang, Lei
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1392 - 1395
  • [4] Network Intrusion Detection Through Machine Learning With Efficient Feature Selection
    Desai, Rohan
    Gopalakrishnan, Venkatesh Tiruchirai
    2023 15TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS, COMSNETS, 2023,
  • [5] Automatic Feature Extraction and Selection For Machine Learning Based Intrusion Detection
    Liu, Jinjie
    Chung, Sun Sunnie
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 1400 - 1405
  • [6] Review on intrusion detection using feature selection with machine learning techniques
    Kalimuthan, C.
    Renjit, J. Arokia
    MATERIALS TODAY-PROCEEDINGS, 2020, 33 : 3794 - 3802
  • [7] Machine learning-based intrusion detection: feature selection versus feature extraction
    Ngo, Vu-Duc
    Vuong, Tuan-Cuong
    Van Luong, Thien
    Tran, Hung
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (03): : 2365 - 2379
  • [8] An Approach to Feature Selection in Intrusion Detection Systems Using Machine Learning Algorithms
    Kavitha, G.
    Elango, N. M.
    INTERNATIONAL JOURNAL OF E-COLLABORATION, 2020, 16 (04) : 48 - 58
  • [9] Quantum Machine Learning for Feature Selection in Internet of Things Network Intrusion Detection
    Davis, Patrick J.
    Coffey, Sean M.
    Beshaj, Lubjana
    Bastian, Nathaniel D.
    QUANTUM INFORMATION SCIENCE, SENSING, AND COMPUTATION XVI, 2024, 13028
  • [10] Feature Selection and Intrusion Detection in Cloud Environment based on Machine Learning Algorithms
    Javadpour, Amir
    Abharian, Sanaz Kazemi
    Wang, Guojun
    2017 15TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS AND 2017 16TH IEEE INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING AND COMMUNICATIONS (ISPA/IUCC 2017), 2017, : 1417 - 1421