MULTI-MODAL SELF-SUPERVISED LEARNING FOR BOOSTING CROP CLASSIFICATION USING SENTINEL2 AND PLANETSCOPE

被引:1
作者
Patnala, Ankit [1 ]
Stadtler, Scarlet [1 ]
Schultz, Martin G. [1 ]
Gall, Juergen [2 ]
机构
[1] Forschungszentrum Juelich, Juelich Supercomp Ctr, Julich, Germany
[2] Univ Bonn, Dept Informat Syst Artificial Intelligence, Bonn, Germany
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
Optical remote sensing; crop classification; contrastive learning; multi-modal contrastive learning; time-series; self-supervised learning;
D O I
10.1109/IGARSS52108.2023.10282665
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Remote sensing has enabled large-scale crop classification to understand agricultural ecosystems and estimate production yields. Since few years, machine learning is increasingly used for automated crop classification. However, most approaches apply novel algorithms to custom datasets containing information of few crop fields covering a small region and this often leads to poor models that lack generalization capability. Therefore in this work, inspired from the self-supervised learning approaches, we devised and compared different approaches for contrastive self-supervised learning using Sentinel2 and Planetscope data for crop classification. In addition, based on the dataset DENETHOR, we assembled our own dataset for the experiments.
引用
收藏
页码:2223 / 2226
页数:4
相关论文
共 13 条
[1]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[2]  
Bahri D., 2021, Scarf: Self-supervised Contrastive Learn. Using Random Feature Corrupt.
[3]  
Bischl B, 2021, Openml: a benchmarking layer on top of openml to quickly create, download, and share systematic benchmarks
[4]  
Chen T, 2020, PR MACH LEARN RES, V119
[5]  
Cornegruta Savelie., 2016, P 7 INT WORKSHOP HLT, P17, DOI DOI 10.18653/V1/W16-6103
[6]  
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
[7]   Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services [J].
Drusch, M. ;
Del Bello, U. ;
Carlier, S. ;
Colin, O. ;
Fernandez, V. ;
Gascon, F. ;
Hoersch, B. ;
Isola, C. ;
Laberinti, P. ;
Martimort, P. ;
Meygret, A. ;
Spoto, F. ;
Sy, O. ;
Marchese, F. ;
Bargellini, P. .
REMOTE SENSING OF ENVIRONMENT, 2012, 120 :25-36
[8]   InceptionTime: Finding AlexNet for time series classification [J].
Fawaz, Hassan Ismail ;
Lucas, Benjamin ;
Forestier, Germain ;
Pelletier, Charlotte ;
Schmidt, Daniel F. ;
Weber, Jonathan ;
Webb, Geoffrey, I ;
Idoumghar, Lhassane ;
Muller, Pierre-Alain ;
Petitjean, Francois .
DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (06) :1936-1962
[9]   Self-Supervised Learning: Generative or Contrastive [J].
Liu, Xiao ;
Zhang, Fanjin ;
Hou, Zhenyu ;
Mian, Li ;
Wang, Zhaoyu ;
Zhang, Jing ;
Tang, Jie .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) :857-876
[10]  
Oord A. v. d., 2018, Representation learning with contrastive predictive coding, DOI 10.48550/arxiv.1807.03748