Comparative study of different machine learning models for automatic diabetic retinopathy detection using fundus image

被引:4
|
作者
Gupta, Shubhi [1 ]
Thakur, Sanjeev [2 ]
Gupta, Ashutosh [3 ]
机构
[1] Amity Univ, Dept Comp Sci, Noida, Uttar Pradesh, India
[2] Amity Univ, Noida, Uttar Pradesh, India
[3] UP Rajarshi Tandon Open Univ, Noida, Uttar Pradesh, India
关键词
Diabetic retinopathy detection; Machine learning (ML); Haralick features; Wavelet transforms; CLASSIFICATION; SEGMENTATION; SYSTEM;
D O I
10.1007/s11042-023-16813-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetics suffer from an eye condition called diabetic retinopathy (DR), which can lead to vision loss. The main region affected is the blood vessels in the retina. A large proportion of the world's population is suffering from the harmful effects of diabetes, and most of them are not recognized early. Severe vision loss can be reduced through early detection, diagnosis, and treatment efficiency. The manual errors and tedious work of ophthalmologists can be reduced by using computer-assisted automatic diagnosis of DR. This paper provides a comparative study and analysis of different segmentation, feature extraction and classification methods used for the automatic detection of DR. The fundus images from the Kaggle data set will be used to evaluate these techniques. The best results were obtained when Watershed Transform (WT) and Triplet Half Band Filter Bank (THFB) based segmentation and Haralick, and ADTCWT (Anisotropic Dual Tree Complex Wavelet Transform) based feature extraction together with machine learning based SVM (Support Vector Machine) classifier. The performance of the classifiers was evaluated in terms of accuracy, precision, F-Score, TPR (True Positive Rate), TNR (True Negative Rate), Kappa, FPR (False Positive Rate), FNR (False Negative rate), pixel accuracy, Jaccard similarity, cube coefficient, VOE (volumetric overlap error) and SVD (symmetric volume difference). The SVM model obtained a training accuracy of (98.42%).
引用
收藏
页码:34291 / 34322
页数:32
相关论文
共 50 条
  • [21] Deep learning for diabetic retinopathy detection and classification based on fundus images: A review
    Tsiknakis, Nikos
    Theodoropoulos, Dimitris
    Manikis, Georgios
    Ktistakis, Emmanouil
    Boutsora, Ourania
    Berto, Alexa
    Scarpa, Fabio
    Scarpa, Alberto
    Fotiadis, Dimitrios, I
    Marias, Kostas
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135
  • [22] ROC Analysis of Classifiers in Automatic Detection of Diabetic Retinopathy using Shape Features of Fundus Images
    Ramani, R. Geetha
    Balasubramanian, Lakshmi
    Jacob, Shomona Gracia
    2013 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2013, : 66 - 72
  • [23] Automatic detection of microaneurysms in diabetic retinopathy fundus images using the L*a*b color space
    Navarro, Pedro J.
    Alonso, Diego
    Stathis, Kostas
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (01) : 74 - 83
  • [24] Automatic Detection of Diabetic Eye Disease Through Deep Learning Using Fundus Images: A Survey
    Sarki, Rubina
    Ahmed, Khandakar
    Wang, Hua
    Zhang, Yanchun
    IEEE ACCESS, 2020, 8 : 151133 - 151149
  • [25] LBP and Machine Learning for Diabetic Retinopathy Detection
    de la Calleja, Jorge
    Tecuapetla, Lourdes
    Auxilio Medina, Ma
    Barcenas, Everardo
    Urbina Najera, Argelia B.
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2014, 2014, 8669 : 110 - 117
  • [26] Diabetic Retinopathy Detection using Deep Learning
    Nguyen, Quang H.
    Muthuraman, Ramasamy
    Singh, Laxman
    Sen, Gopa
    Anh Cuong Tran
    Nguyen, Binh P.
    Chua, Matthew
    ICMLSC 2020: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING, 2020, : 103 - 107
  • [27] Prediction of diabetic retinopathy using machine learning techniques
    Jebaseeli, T. Jemima
    Durai, C. Anand Deva
    Alelyani, Salem
    Alsaqer, Mohammed Saleh
    JOURNAL OF ENGINEERING RESEARCH, 2023, 11 (2B): : 27 - 37
  • [28] Modified capsule network for diabetic retinopathy detection and classification using fundus images
    Aswini, A. Arockia
    Sivarani, T. S.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 5521 - 5542
  • [29] Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model
    Shankar, K.
    Sait, Abdul Rahaman Wahab
    Gupta, Deepak
    Lakshmanaprabu, S. K.
    Khanna, Ashish
    Pandey, Hari Mohan
    PATTERN RECOGNITION LETTERS, 2020, 133 : 210 - 216
  • [30] Diabetic retinopathy detection using supervised and unsupervised deep learning: a review study
    Naz, Huma
    Ahuja, Neelu Jyothi
    Nijhawan, Rahul
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (05)