Effects of Different Salinity Levels in Drip Irrigation with Brackish Water on Soil Water-Salt Transport and Yield of Protected Tomato (Solanum lycopersicum)

被引:4
|
作者
Ma, Jiaying [1 ,2 ,3 ]
Li, Zhaoyang [1 ,2 ,3 ]
Jiang, Wenge [1 ,3 ]
Liu, Jiangfan [1 ,3 ]
机构
[1] Tarim Univ, Coll Water Hydraul & Architectural Engn, Alar 843300, Peoples R China
[2] Shihezi Univ, Coll Water Conservancy & Architectural Engn, Shihezi 832000, Peoples R China
[3] Minist Agr & Rural Affairs, Key Lab Northwest Oasis Water Saving Agr, Shihezi 832000, Peoples R China
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 09期
基金
中国国家自然科学基金;
关键词
brackish water irrigation; protected tomato; soil water-salt; growth characteristics; yield; DEFICIT IRRIGATION; FRUIT YIELD; GROWTH; QUALITY; IMPACT;
D O I
10.3390/agronomy13092442
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The effective exploration and utilization of brackish water resources are crucial to alleviating the scarcity of freshwater in arid regions. This study focused on protected tomato plants and set up four irrigation salinity levels: T1 (2 g<middle dot>L-1), T2 (4 g<middle dot>L-1), T3 (6 g<middle dot>L-1), and T4 (8 g<middle dot>L-1), with freshwater irrigation as a control (CK). The aim was to investigate the effects of continuous brackish water irrigation on soil water-salt transport and tomato yield. The outcomes highlighted that the moisture content in different layers of soil exhibited a "high in the middle, low at both ends" pattern, with the primary accumulation of soil moisture occurring at the 40 cm depth. The range and moisture content of the soil wetted zone increased with elevated salinity levels. Under continuous brackish water irrigation, the range of the soil wetted zone expanded further for the autumn crops, and the moisture content significantly increased compared to the spring crops. The concentration of soil salt gradually decreased with increasing soil depth, exhibiting greater levels in the 0-20 cm layer compared to the 40-80 cm layer. The average salt concentration in the soil at the end of the growth period was significantly higher than before transplantation, and this phenomenon became more pronounced with increasing salinity levels. Initial irrigation with brackish water with a salinity level of 2-4 g<middle dot>L-1 promoted the growth of the tomatoes planted in the spring and the plant height and stem diameter reached the peak values of 1.68 m and 1.08 mm for the T2 treatment, respectively, which were 7.1% and 9.2% higher than that of the CK treatment, ensuring efficient yield and water usage. However, continuous irrigation with brackish water with a salinity level of 2-4 g<middle dot>L-1 inhibited the growth and yield of the tomatoes planted in autumn, while the T1 and T2 treatments only yielded 24,427.42 and 16,774.86 kg<middle dot>hm(-2), respectively, showing a decline of 32.2% and 46.1% compared to the yields of the spring season. Considering the soil water-salt and yield indicators, under the conditions of non-continuous brackish water irrigation, using water with a salinity level of 2-4 g<middle dot>L-1 is recommended for drip irrigation of protected tomatoes.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Effects of drip irrigation regimes on tomato fruit yield and water use efficiency
    Zhai, Y. M.
    Shao, X. H.
    Xing, W. G.
    Wang, Y.
    Hung, T. T.
    Xu, H. L.
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2010, 8 (3-4): : 709 - 713
  • [32] Impacts of different water salinity levels on salt tolerance, water use, yield, and growth of chives (Allium schoenoprasum)
    Arslan, Hakan
    Kiremit, Mehmet Sait
    Gungor, Alper
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2018, 49 (20) : 2614 - 2625
  • [33] Effects of various soil water potential thresholds for drip irrigation on soil salinity, seed cotton yield and water productivity of cotton in northwest China
    Xiao, Chao
    Ji, Qingyuan
    Zhang, Fucang
    Li, Yi
    Fan, Junliang
    Hou, Xianghao
    Yan, Fulai
    Liu, Xiaoqiang
    Gong, Kaiyuan
    AGRICULTURAL WATER MANAGEMENT, 2023, 279
  • [34] Optimal Water and Nitrogen Regimes Increased Fruit Yield and Water Use Efficiency by Improving Root Characteristics of Drip-Fertigated Greenhouse Tomato (Solanum lycopersicum L.)
    Feng, Hanlong
    Dou, Zhiyao
    Jiang, Wenhui
    Mahmood, Hemat
    Liao, Zhenqi
    Li, Zhijun
    Fan, Junliang
    AGRONOMY-BASEL, 2024, 14 (10):
  • [35] Effects of Different Levels of Irrigation Water Salinity and Leaching on Yield and Yield Components of Wheat in an Arid Region
    Mostafazadeh-Fard, Behrouz
    Mansouri, Hamed
    Mousavi, Sayed-Farhad
    Feizi, Mohammad
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2009, 135 (01) : 32 - 38
  • [36] Effect of soil aeration on root morphology and photosynthetic characteristics of potted tomato plants (Solanum lycopersicum) at different NaCl salinity levels
    Li, Yuan
    Niu, Wenquan
    Cao, Xiaoshu
    Wang, Jingwei
    Zhang, Mingzhi
    Duan, Xiaohui
    Zhang, Zhenxing
    BMC PLANT BIOLOGY, 2019, 19 (1)
  • [37] Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China
    DU Ya-dan
    CAO Hong-xia
    LIU Shi-quan
    GU Xiao-bo
    CAO Yu-xin
    JournalofIntegrativeAgriculture, 2017, 16 (05) : 1153 - 1161
  • [38] Soil physicochemical properties and cotton (Gossypium hirsutum L.) yield under brackish water mulched drip irrigation
    Yang, Guang
    Li, Fadong
    Tian, Lijun
    He, Xinlin
    Gao, Yongli
    Wang, Zelin
    Ren, Futian
    SOIL & TILLAGE RESEARCH, 2020, 199 (199)
  • [39] Sunflower germplasms' response to different water and salinity stress levels in greenhouse and field conditions under subsurface drip irrigation
    Saylak, Sevgi
    Irmak, Suat
    Eskridge, Kent M.
    Dweikat, Ismail
    IRRIGATION AND DRAINAGE, 2025, 74 (01) : 161 - 181
  • [40] Effect of soil matric potential on tomato yield and water use under drip irrigation condition
    Wang, Dan
    Kang, Yaohu
    Wan, Shuqin
    AGRICULTURAL WATER MANAGEMENT, 2007, 87 (02) : 180 - 186