Effects of Different Salinity Levels in Drip Irrigation with Brackish Water on Soil Water-Salt Transport and Yield of Protected Tomato (Solanum lycopersicum)

被引:4
|
作者
Ma, Jiaying [1 ,2 ,3 ]
Li, Zhaoyang [1 ,2 ,3 ]
Jiang, Wenge [1 ,3 ]
Liu, Jiangfan [1 ,3 ]
机构
[1] Tarim Univ, Coll Water Hydraul & Architectural Engn, Alar 843300, Peoples R China
[2] Shihezi Univ, Coll Water Conservancy & Architectural Engn, Shihezi 832000, Peoples R China
[3] Minist Agr & Rural Affairs, Key Lab Northwest Oasis Water Saving Agr, Shihezi 832000, Peoples R China
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 09期
基金
中国国家自然科学基金;
关键词
brackish water irrigation; protected tomato; soil water-salt; growth characteristics; yield; DEFICIT IRRIGATION; FRUIT YIELD; GROWTH; QUALITY; IMPACT;
D O I
10.3390/agronomy13092442
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The effective exploration and utilization of brackish water resources are crucial to alleviating the scarcity of freshwater in arid regions. This study focused on protected tomato plants and set up four irrigation salinity levels: T1 (2 g<middle dot>L-1), T2 (4 g<middle dot>L-1), T3 (6 g<middle dot>L-1), and T4 (8 g<middle dot>L-1), with freshwater irrigation as a control (CK). The aim was to investigate the effects of continuous brackish water irrigation on soil water-salt transport and tomato yield. The outcomes highlighted that the moisture content in different layers of soil exhibited a "high in the middle, low at both ends" pattern, with the primary accumulation of soil moisture occurring at the 40 cm depth. The range and moisture content of the soil wetted zone increased with elevated salinity levels. Under continuous brackish water irrigation, the range of the soil wetted zone expanded further for the autumn crops, and the moisture content significantly increased compared to the spring crops. The concentration of soil salt gradually decreased with increasing soil depth, exhibiting greater levels in the 0-20 cm layer compared to the 40-80 cm layer. The average salt concentration in the soil at the end of the growth period was significantly higher than before transplantation, and this phenomenon became more pronounced with increasing salinity levels. Initial irrigation with brackish water with a salinity level of 2-4 g<middle dot>L-1 promoted the growth of the tomatoes planted in the spring and the plant height and stem diameter reached the peak values of 1.68 m and 1.08 mm for the T2 treatment, respectively, which were 7.1% and 9.2% higher than that of the CK treatment, ensuring efficient yield and water usage. However, continuous irrigation with brackish water with a salinity level of 2-4 g<middle dot>L-1 inhibited the growth and yield of the tomatoes planted in autumn, while the T1 and T2 treatments only yielded 24,427.42 and 16,774.86 kg<middle dot>hm(-2), respectively, showing a decline of 32.2% and 46.1% compared to the yields of the spring season. Considering the soil water-salt and yield indicators, under the conditions of non-continuous brackish water irrigation, using water with a salinity level of 2-4 g<middle dot>L-1 is recommended for drip irrigation of protected tomatoes.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Impact of Deficit Drip Irrigation with Brackish Water on Soil Water-Salt Dynamics and Maize Yield in Film-Mulched Fields
    Guo, Tongkai
    Huang, Xi
    Feng, Kewei
    Mao, Xiaomin
    AGRONOMY-BASEL, 2025, 15 (02):
  • [2] Effects of different planting patterns on cotton yield and soil water-salt under brackish water irrigation before sowing
    Sun, J. (jshsun623@yahoo.com.cn), 1600, Chinese Society of Agricultural Machinery (44): : 97 - 102
  • [3] Changes of Soil Water and Heat Transport and Yield of Tomato (Solanum lycopersicum) in Greenhouses with Micro-Sprinkler Irrigation under Plastic Film
    Zhang, Mingzhi
    Li, Yuan
    Liu, Jianfei
    Wang, Jingwei
    Zhang, Zhenxing
    Xiao, Na
    AGRONOMY-BASEL, 2022, 12 (03):
  • [4] Effects of Different Mulched Drip Irrigation Levels on the Soil Microorganisms and Yield of Greenhouse Tomatoes (Solanum lycopersicum L.)
    An, Jianglong
    Zheng, Lijian
    Ma, Li
    Ma, Xiangming
    Ma, Juanjuan
    HORTICULTURAE, 2025, 11 (02)
  • [5] Prediction model of soil water and salt transport on yield of summer squash under mulch drip irrigation with brackish water
    Guo X.
    Bi Y.
    Sun X.
    Ma J.
    Kong X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2019, 8 (167-175): : 167 - 175
  • [6] Magnetically-treated brackish water affects soil water-salt distribution and the growth of cotton with film mulch drip irrigation in Xinjiang, China
    Zhou, Beibei
    Liang, Chaofan
    Chen, Xiaopeng
    Ye, Sitan
    Peng, Yao
    Yang, Lu
    Duan, Manli
    Wang, Xingpeng
    AGRICULTURAL WATER MANAGEMENT, 2022, 263
  • [7] Evaluating Soil Water-Salt Dynamics under Brackish Water Drip Irrigation in Greenhouses Subjected to Localized Topsoil Compaction
    Lu, Peirong
    Liu, Yaxin
    Yang, Yujie
    Zhu, Yu
    Jia, Zhonghua
    AGRICULTURE-BASEL, 2024, 14 (03):
  • [8] Effects of brackish water irrigation on the physiological characteristics, yield and quality of mulched drip irrigation cotton under different soil textures
    Wang Z.
    Wang F.
    Lyu D.
    Liu J.
    Zhu Y.
    Wen Y.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (24): : 69 - 78
  • [9] Magnetized Saline Water Drip Irrigation Alters Soil Water-Salt Infiltration and Redistribution Characteristics
    Xin, Mingliang
    Zhao, Qiao
    Qiao, Ying
    Ma, Yingjie
    WATER, 2024, 16 (18)
  • [10] Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region
    Li, Dan
    Wan, Shuqin
    Li, Xiaobin
    Kang, Yaohu
    Han, Xiaoyu
    AGRICULTURAL WATER MANAGEMENT, 2022, 261