On singular value decomposition and generalized inverse of a commutative quaternion matrix and applications

被引:8
|
作者
Zhang, Dong [1 ]
Jiang, Tongsong [2 ,3 ]
Wang, Gang [1 ]
Vasil'ev, V. I. [1 ]
机构
[1] North Eastern Fed Univ, Inst Math & Informat Sci, Yakutsk 677000, Russia
[2] Shandong Xiandai Univ, Sch Elect Informat, Jinan 250104, Shandong, Peoples R China
[3] Linyi Univ, Sch Math & Stat, Linyi 276005, Shandong, Peoples R China
基金
俄罗斯科学基金会;
关键词
Commutative quaternion matrix; Complex representation; Moore-Penrose generalized inverse; Singular value decomposition; Least squares problem; STRUCTURE-PRESERVING METHOD;
D O I
10.1016/j.amc.2023.128291
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of a complex representation of a commutative quaternion matrix, the singular value decomposition and the generalized inverse problems of a commutative quaternion matrix are studied, and the corresponding theorems and algorithms are given. In addition, based on the singular value decomposition and generalized inverse of a commutative quaternion matrix, the numerical experiments for solving the least squares problem and the color image watermarking problem are given. Numerical experiments illustrate the effectiveness and reliability of the proposed algorithms.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Optimal blind watermarking for color images based on the U matrix of quaternion singular value decomposition
    Feng Liu
    Long-Hua Ma
    Cong Liu
    Zhe-Ming Lu
    Multimedia Tools and Applications, 2018, 77 : 23483 - 23500
  • [32] Optimal blind watermarking for color images based on the U matrix of quaternion singular value decomposition
    Liu, Feng
    Ma, Long-Hun
    Liu, Cong
    Lu, Zhe-Ming
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (18) : 23483 - 23500
  • [33] Generalized matrix inverse reconstruction for SPECT using a weighted singular value spectrum
    Smith, MF
    1995 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD, VOLS 1-3, 1996, : 1723 - 1727
  • [34] Generalized matrix inverse reconstruction for SPECT using a weighted singular value spectrum
    Smith, MF
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1996, 43 (03) : 2008 - 2017
  • [35] Generalized matrix inverse reconstruction for SPECT using a weighted singular value spectrum
    Smith, Mark F.
    IEEE Transactions on Nuclear Science, 1996, 43 (3 pt 2): : 2008 - 2017
  • [36] Randomized Generalized Singular Value Decomposition
    Wei Wei
    Hui Zhang
    Xi Yang
    Xiaoping Chen
    Communications on Applied Mathematics and Computation, 2021, 3 : 137 - 156
  • [37] TOWARDS A GENERALIZED SINGULAR VALUE DECOMPOSITION
    PAIGE, CC
    SAUNDERS, MA
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) : 398 - 405
  • [38] COMPUTING THE GENERALIZED SINGULAR VALUE DECOMPOSITION
    PAIGE, CC
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (04): : 1126 - 1146
  • [39] Randomized Generalized Singular Value Decomposition
    Wei, Wei
    Zhang, Hui
    Yang, Xi
    Chen, Xiaoping
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (01) : 137 - 156
  • [40] Solving the Dual Generalized Commutative Quaternion Matrix Equation AXB = C
    Shi, Lei
    Wang, Qing-Wen
    Xie, Lv-Ming
    Zhang, Xiao-Feng
    SYMMETRY-BASEL, 2024, 16 (10):