Explainable Deep Learning Models With Gradient-Weighted Class Activation Mapping for Smart Agriculture

被引:17
作者
Quach, Luyl-Da [1 ]
Quoc, Khang Nguyen [1 ]
Quynh, Anh Nguyen [1 ]
Thai-Nghe, Nguyen [2 ]
Nguyen, Tri Gia [3 ]
机构
[1] FPT Univ, Can Tho Campus, Can Tho 900000, Vietnam
[2] Can Tho Univ, Coll ICT, Fac Informat Syst, Can Tho, Vietnam
[3] FPT Univ, Quy Nhon Campus, Quy Nhon, Vietnam
关键词
Explainable artificial intelligence; XAI; agriculture; grad-CAM; deep learning; explainable AI; ARTIFICIAL-INTELLIGENCE;
D O I
10.1109/ACCESS.2023.3296792
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Explainable Artificial Intelligence is a recent research direction that aims to explain the results of the Deep learning model. However, many recent research need to go into depth in evaluating the effective-ness of deep learning models in classifying image objects. For that reason, the research proposes two stages in the process of applying Explainable Artificial Intelligence, including: (1) assessing the accuracy of the deep learning model through evaluation methods, (2) using Grad-CAM for model interpretation aims to evaluate the feature detection ability of an image when recognized by deep learning models. The deep learning models included in the evaluation included VGG16, ResNet50, ResNet50V2, Xception, EfficientNetV2, Incep-tionV3, DenseNet201, MobileNetV2, MobileNet, NasNetMobile, RegNetX002, and InceptionResNetV2 on our updated VegNet dataset is available at: https://www.kaggle.com/datasets/enalis/tomatoes-dataset. The results show that the MobieNet model has high accuracy but less reliability than EfficientNetV2S and Xception. However, MobileNetV2's accuracy is the highest when considering the ratio match rate. The research results contribute to the construction of intelligent agricultural support systems (using automatic fruit-picking robots, removing poor-quality fruits,...) from the results of the Explainable AI model to be able to use the optimal deep learning model in processing.
引用
收藏
页码:83752 / 83762
页数:11
相关论文
共 50 条
  • [31] The Impact of the Application of Deep Learning Techniques with IoT in Smart Agriculture
    Jouini, Oumayma
    Sethom, Kaouthar
    Bouallegue, Ridha
    2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 977 - 982
  • [32] Vision-Based Fault Diagnostics Using Explainable Deep Learning With Class Activation Maps
    Sun, Kyung Ho
    Huh, Hyunsuk
    Tama, Bayu Adhi
    Lee, Soo Young
    Ha Jung, Joon
    Lee, Seungchul
    IEEE ACCESS, 2020, 8 : 129169 - 129179
  • [33] A Review of Explainable Deep Learning Cancer Detection Models in Medical Imaging
    Gulum, Mehmet A.
    Trombley, Christopher M.
    Kantardzic, Mehmed
    APPLIED SCIENCES-BASEL, 2021, 11 (10):
  • [34] Internet of Things (IoT)-Enabled Machine Learning Models for Efficient Monitoring of Smart Agriculture
    Aldossary, Mohammad
    Alharbi, Hatem A.
    Ul Hassan, C. H. Anwar
    IEEE ACCESS, 2024, 12 : 75718 - 75734
  • [35] Explainable AI for Industry 4.0: Semantic Representation of Deep Learning Models
    Terziyan, Vagan
    Vitko, Oleksandra
    3RD INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, 2022, 200 : 216 - 226
  • [36] Real-time wear rate prediction and analysis: Gradient-weighted class activation mapping (Grad-CAM) in 1D convolutional neural network bridges experiments and neural networks
    Liu, Zhengdi
    An, Xulong
    Zhang, Lantian
    Sui, Yudong
    Xu, Zhengxiang
    Sun, Wenwen
    MATERIALS TODAY COMMUNICATIONS, 2023, 36
  • [37] Tailored Deep Learning based Architecture for Smart Agriculture
    Boukhris, Louay
    Ben Abderrazak, Jihene
    Besbes, Hichem
    2020 16TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC, 2020, : 964 - 969
  • [38] Deep Learning and IoT for Smart Agriculture using WSN
    Varman, Aruul Mozhi S.
    Baskaran, Arvind Ram
    Aravindh, S.
    Prabhu, E.
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2017, : 116 - 121
  • [39] Climatic Condition–Based Comparative Study of Deep Learning Models for Yield Forecasting in Smart Agriculture
    Jyoti A. Dhanke
    Sachin Dadu Khandekar
    Roop Raj
    Madhava Rao Chunduru
    Aniket K. Shahade
    P. Mani
    Allam Balaram
    Remote Sensing in Earth Systems Sciences, 2025, 8 (2) : 365 - 374
  • [40] Explainable AI for Retinoblastoma Diagnosis: Interpreting Deep Learning Models with LIME and SHAP
    Aldughayfiq, Bader
    Ashfaq, Farzeen
    Jhanjhi, N. Z.
    Humayun, Mamoona
    DIAGNOSTICS, 2023, 13 (11)