Net-zero emissions chemical industry in a world of limited resources

被引:99
作者
Gabrielli, Paolo [1 ,2 ]
Rosa, Lorenzo [2 ]
Gazzani, Matteo [3 ,4 ]
Meys, Raoul [5 ]
Bardow, Andre [1 ]
Mazzotti, Marco [1 ]
Sansavini, Giovanni [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Energy & Proc Engn, CH-8092 Zurich, Switzerland
[2] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA
[3] Univ Utrecht, Copernicus Inst Sustainable Dev, Princetonlaan 8a, NL-3584 CB Utrecht, Netherlands
[4] Eindhoven Univ Technol, Sustainable Proc Engn Chem Engn & Chem, NL-5612 AP Eindhoven, Netherlands
[5] Carbon Minds GmbH, D-50933 Cologne, Germany
来源
ONE EARTH | 2023年 / 6卷 / 06期
基金
瑞士国家科学基金会;
关键词
METHANOL PRODUCTION; CARBON CAPTURE; TECHNOECONOMIC ASSESSMENT; CO2; STORAGE; AMMONIA; BIOMASS; ENERGY; GAS; SUSTAINABILITY;
D O I
10.1016/j.oneear.2023.05.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The chemical industry is responsible for about 5% of global CO2 emissions and is key to achieving net-zero targets. Decarbonizing this industry, nevertheless, faces particular challenges given the widespread use of carbon-rich raw materials, the need for high-temperature heat, and the complex global value chains. Multiple technology routes are now available for producing chemicals with net-zero CO2 emissions based on biomass, recycling, and carbon capture, utilization, and storage. However, the extent to which these routes are viable with respect to local availability of energy and natural resources remains unclear. In this review, we compare net-zero routes by quantifying their energy, land, and water requirements and the corresponding induced resource scarcity at the country level and further discuss the technical and environmental viability of a net-zero chemical industry. We find that a net-zero chemical industry will require location-specific inte-grated solutions that combine net-zero routes with circular approaches and demand-side measures and might result in a reshaping of the global chemicals trade.
引用
收藏
页码:682 / 704
页数:23
相关论文
共 203 条
  • [1] On the climate change mitigation potential of CO2 conversion to fuels
    Abanades, J. Carlos
    Rubin, Edward S.
    Mazzotti, Marco
    Herzog, Howard J.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (12) : 2491 - 2499
  • [2] Explaining successful and failed investments in US carbon capture and storage using empirical and expert assessments
    Abdulla, Ahmed
    Hanna, Ryan
    Schell, Kristen R.
    Babacan, Oytun
    Victor, David G.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2021, 16 (01):
  • [3] Losses, inefficiencies and waste in the global food system
    Alexander, Peter
    Brown, Calum
    Arneth, Almut
    Finnigan, John
    Moran, Dominic
    Rounsevell, Mark D. A.
    [J]. AGRICULTURAL SYSTEMS, 2017, 153 : 190 - 200
  • [4] Allen C., 2022, SETTING DAC TRACK ST
  • [6] Anderson A., 2021, NEW IND REVOLUTION L
  • [7] [Anonymous], 2022, FINANCIAL TIME
  • [8] [Anonymous], 2022, Guardian, T.
  • [9] [Anonymous], 2018, The future of petrochemicals
  • [10] [Anonymous], 2022, REUTERS