Genome-wide analysis of the WRKY genes and their important roles during cold stress in white clover

被引:9
|
作者
Li, Manman [1 ]
Zhang, Xueqi [1 ]
Zhang, Tianxiang [1 ]
Bai, Yan [1 ]
Chen, Chao [1 ]
Guo, Donglin [1 ]
Guo, Changhong [1 ]
Shu, Yongjun [1 ]
机构
[1] Harbin Normal Univ, Coll Life Sci & Techonol, Harbin, Heilongjiang, Peoples R China
来源
PEERJ | 2023年 / 11卷
基金
中国博士后科学基金;
关键词
White clover; WRKY; Genetic regulation network; Cold stress; TRANSCRIPTION FACTORS; DNA-BINDING; IDENTIFICATION; EXPRESSION; DEFENSE; RESPONSES; NETWORKS; DATABASE; PROTEIN; FAMILY;
D O I
10.7717/peerj.15610
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: White clover (Trifolium repens L) is a high-quality forage grass with a high protein content, but it is vulnerable to cold stress, which can negatively affect its growth and development. WRKY transcription factor is a family of plant transcription factors found mainly in higher plants and plays an important role in plant growth, development, and stress response. Although WRKY transcription factors have been studied extensively in other plants, it has been less studied in white clover.Methods and Results: In the present research, we have performed a genome-wide analysis of the WRKY gene family of white clover, in total, there were 145 members of WRKY transcription factors identified in white clover. The characterization of the TrWRKY genes was detailed, including conserved motif analysis, phylogenetic analysis, and gene duplication analysis, which have provided a better understanding of the structure and evolution of the TrWRKY genes in white clover. Meanwhile, the genetic regulation network (GRN) containing TrWRKY genes was reconstructed, and Gene Ontology (GO) annotation analysis of these function genes showed they contributed to regulation of transcription process, response to wounding, and phosphorylay signal transduction system, all of which were important processes in response to abiotic stress. To determine the TrWRKY genes function under cold stress, the RNA-seq dataset was analyzed; most of TrWRKY genes were highly upregulated in response to cold stress, particularly in the early stages of cold stress. These results were validated by qRT-PCR experiment, implying they are involved in various gene regulation pathways in response to cold stress.Conclusion: The results of this study provide insights that will be useful for further functional analyses of TrWRKY genes in response to biotic or abiotic stresses in white clover. These findings are likely to be useful for further research on the functions of TrWRKY genes and their role in response to cold stress, which is important to understand the molecular mechanism of cold tolerance in white clover and improve its cold tolerance.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Genome-wide analysis of WRKY transcription factors in white pear (Pyrus bretschneideri) reveals evolution and patterns under drought stress
    Huang, Xiaosan
    Li, Kongqing
    Xu, Xiaoyong
    Yao, Zhenghong
    Jin, Cong
    Zhang, Shaoling
    BMC GENOMICS, 2015, 16
  • [42] Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses
    Donghua Li
    Pan Liu
    Jingyin Yu
    Linhai Wang
    Komivi Dossa
    Yanxin Zhang
    Rong Zhou
    Xin Wei
    Xiurong Zhang
    BMC Plant Biology, 17
  • [43] Genome-wide analysis of WRKY transcription factors and their response to abiotic stress in celery (Apium graveolens L.)
    Wu, Bei
    Li, Meng-Yao
    Xu, Zhi-Sheng
    Wang, Feng
    Xiong, Ai-Sheng
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2018, 32 (02) : 293 - 302
  • [44] Genome-wide identification and expression analysis of the WRKY genes in sugar beet (Beta vulgaris L.) under alkaline stress
    Wu, Guo-Qiang
    Li, Zhi-Qiang
    Cao, Han
    Wang, Jin-Long
    PEERJ, 2019, 7
  • [45] Genome-wide identification and expression analysis of DREB genes in alfalfa (Medicago sativa) in response to cold stress
    Sheng, Song
    Guo, Xinyu
    Wu, Changzheng
    Xiang, Yucheng
    Duan, Shuhui
    Yang, Weiqin
    Li, Wenrui
    Cao, Fengchun
    Liu, Laihua
    PLANT SIGNALING & BEHAVIOR, 2022, 17 (01)
  • [46] Genome-Wide Analysis of the Trihelix Gene Family and Their Response to Cold Stress in Dendrobium officinale
    Tong, Yan
    Huang, Hui
    Wang, YuHua
    SUSTAINABILITY, 2021, 13 (05) : 1 - 15
  • [47] Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stress
    Meng, Dong
    Li, Yuanyuan
    Bai, Yang
    Li, Mingjun
    Cheng, Lailiang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2016, 103 : 71 - 83
  • [48] Genome-Wide Identification and Expression Analysis of RLCK-VII Subfamily Genes Reveal Their Roles in Stress Responses of Upland Cotton
    Cen, Yuhan
    Geng, Shiyi
    Gao, Linying
    Wang, Xinyue
    Yan, Xin
    Hou, Yuxia
    Wang, Ping
    PLANTS-BASEL, 2023, 12 (17):
  • [49] Genome-wide analysis of cold imbibition stress in soybean, Glycine max
    Haidar, Siwar
    Lackey, Simon
    Charette, Martin
    Yoosefzadeh-Najafabadi, Mohsen
    Gahagan, A. Claire
    Hotte, Thomas
    Belzile, Francois
    Rajcan, Istvan
    Golshani, Ashkan
    Morrison, Malcolm J.
    Cober, Elroy R.
    Samanfar, Bahram
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [50] Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress
    Goel, Ridhi
    Pandey, Ashutosh
    Trivedi, Prabodh K.
    Asif, Mehar H.
    FRONTIERS IN PLANT SCIENCE, 2016, 7