On natural invariants and equivalence of differential operators

被引:2
作者
Lychagin, Valentin
Yumaguzhin, Valeriy
机构
关键词
Linear partial differential operator; Nonlinear partial differential operator; Jet bundle; Differential invariant; Equivalence problem;
D O I
10.1016/j.geomphys.2023.104856
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a description of the field of rational natural differential invariants for a class of nonlinear differential operators of order k > 2 on an n-dimensional manifold, n > 2, and apply the results to the equivalence problem of such operators. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 21 条
[1]  
Alekseevskij D., 1991, ENCY MATH SCI GEOMET, V28
[2]  
[Anonymous], 1986, Geometry of Jet Spaces and Nonlinear Partial Differential Equations
[3]   Combinatorics, transvectants and superalgebras. An elementary constructive approach to Hilbert's finiteness theorem [J].
Brini, A. ;
Regonati, F. ;
Teolis, A. .
ADVANCES IN APPLIED MATHEMATICS, 2006, 37 (03) :287-308
[4]  
Cox David A., 1997, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra
[5]  
Derksen H., 2002, Computational Invariant Theory
[6]  
HILBERT David, 1890, Mathematische Annalen, V36, P473
[7]   Invariants of Hyperbolic Equations: Solution of the Laplace Problem [J].
N. Kh. Ibragimov .
Journal of Applied Mechanics and Technical Physics, 2004, 45 (2) :158-166
[8]   EQUIVALENCE OF DIFFERENTIAL-OPERATORS [J].
KAMRAN, N ;
OLVER, PJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) :1172-1185
[9]   Global Lie-Tresse theorem [J].
Kruglikov, Boris ;
Lychagin, Valentin .
SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03) :1357-1411
[10]  
Laplace P.S., 1773, MEMOIRES LACADEMIE R, P341