Quantization of algebraic invariants through Topological Quantum Field Theories

被引:0
|
作者
Gonzalez-Prieto, Angel [1 ,2 ]
机构
[1] Univ Complutense Madrid, Fac Ciencias Matemat, Plaza Ciencias 3, Madrid 28040, Spain
[2] Inst Ciencias Matemat CSIC UAM UC3M UCM, C Nicolas Cabrera 15, Madrid 28049, Spain
关键词
Topological Quantum Field Theory; TQFT; Quantization; Monoidal structure; Representation variety; FUNDAMENTAL GROUP; VARIETIES; REPRESENTATIONS; POLYNOMIALS; MODULI;
D O I
10.1016/j.geomphys.2023.104849
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the problem of constructing Topological Quantum Field Theories (TQFTs) to quantize algebraic invariants. We exhibit necessary conditions for quantizability based on Euler characteristics. In the case of surfaces, also provide a partial answer in terms of sufficient conditions by means of almost-TQFTs and almost-Frobenius algebras for wide TQFTs. As an application, we show that the Poincare polynomial of G -representation varieties is not a quantizable invariant by means of a monoidal TQFTs for any algebraic group G of positive dimension.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
引用
收藏
页数:22
相关论文
共 50 条
  • [1] On algebraic structures implicit in topological quantum field theories
    Crane, L
    Yetter, D
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1999, 8 (02) : 125 - 163
  • [2] Chern–Simons invariants on hyperbolic manifolds and topological quantum field theories
    L. Bonora
    A. A. Bytsenko
    A. E. Gonçalves
    The European Physical Journal C, 2016, 76
  • [3] A COMBINATORIAL APPROACH TO TOPOLOGICAL QUANTUM-FIELD THEORIES AND INVARIANTS OF GRAPHS
    KAROWSKI, M
    SCHRADER, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (02) : 355 - 402
  • [4] Chern-Simons invariants on hyperbolic manifolds and topological quantum field theories
    Bonora, L.
    Bytsenko, A. A.
    Goncalves, A. E.
    EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (11):
  • [5] TOPOLOGICAL QUANTUM-FIELD THEORIES AND GAUGE-INVARIANCE IN STOCHASTIC QUANTIZATION
    BAULIEU, L
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (16): : 2793 - 2803
  • [6] BRST QUANTIZATION OF TOPOLOGICAL FIELD-THEORIES
    BIRMINGHAM, D
    RAKOWSKI, M
    THOMPSON, G
    NUCLEAR PHYSICS B, 1989, 315 (03) : 577 - 605
  • [7] Categorification of algebraic quantum field theories
    Marco Benini
    Marco Perin
    Alexander Schenkel
    Lukas Woike
    Letters in Mathematical Physics, 2021, 111
  • [8] Quantum field theories on an algebraic curve
    Takhtajan, LA
    CONFERENCE MOSHE FLATO 1999, VOL I: QUANTIZATION, DEFORMATIONS, AND SYMMETRIES, 2000, 21 : 403 - 416
  • [9] Categorification of algebraic quantum field theories
    Benini, Marco
    Perin, Marco
    Schenkel, Alexander
    Woike, Lukas
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (02)
  • [10] Quantum field theories on an algebraic curve
    Takhtajan, LA
    LETTERS IN MATHEMATICAL PHYSICS, 2000, 52 (01) : 79 - 91