共 21 条
Do we need delocalised wavefunctions for the excited state dynamics of 1,1-difluoroethylene?
被引:2
作者:
Gomez, Sandra
[1
,2
]
Singer, Nadja K.
[2
]
Gonzalez, Leticia
[2
]
Worth, Graham A.
[1
]
机构:
[1] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[2] Univ Vienna, Inst Theoret Chem, Fac Chem, Wahringer str 17, A-1090 Vienna, Austria
基金:
英国工程与自然科学研究理事会;
关键词:
quantum dynamics;
excited states;
1;
1-difluoroethylene;
superpositions;
NUCLEAR-SPIN ISOMERS;
MOLECULAR-DYNAMICS;
BORN-OPPENHEIMER;
SEPARATION;
CONVERSION;
ALGORITHM;
EFFICIENT;
WATER;
D O I:
10.1139/cjc-2022-0267
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
In this work, we set up a model Hamiltonian to study the excited state quantum dynamics of 1,1-difluoroethylene, a molecule that has equivalent atoms exchanged by a torsional symmetry operation leading to equivalent minima on the potential energy surface. In systems with many degrees of freedom where the minimum energy geometry is not unique, the ground state wave function will be delocalised among multiple minima. In this small test system, we probe the excited state dynamics considering localised (in a single minimum) and delocalised (spread over among multiple minima) wavefunctions and check whether this choice would influence the final outcome of the quantum dynamics calculations. Our molecular Hamiltonian comprises seven electronic states, including valence and Rydberg states, computed with the MS-CASPT2 method and projected onto the vibrational coordinates of the twelve normal modes of 1,1-difluoroethylene in its vibrational ground state. This Hamiltonian has been symmetrised along the torsional degree of freedom to make both minima completely equivalent and the model is supported by the excellent agreement with the experimental absorption spectrum. Quantum dynamics results show that the different initial conditions studied do not appreciably affect the excited state populations or the absorption spectrum when the dynamics is simulated assuming a delta pulse excitation.
引用
收藏
页码:745 / 757
页数:13