Machine-Learning-Assisted Nanozyme Design: Lessons from Materials and Engineered Enzymes

被引:65
作者
Zhuang, Jie [1 ,2 ]
Midgley, Adam C. [3 ,4 ]
Wei, Yonghua [3 ,4 ]
Liu, Qiqi [3 ,4 ]
Kong, Deling [3 ,4 ]
Huang, Xinglu [3 ,4 ]
机构
[1] Nankai Univ, Sch Med, Tianjin 300071, Peoples R China
[2] Nankai Univ, State Key Lab Med Chem Biol, Tianjin 300071, Peoples R China
[3] Nankai Univ, Key Lab Bioact Mat, Minist Educ, Coll Life Sci,State Key Lab Med Chem Biol, Tianjin 300071, Peoples R China
[4] Nankai Univ, Frontiers Sci Ctr Cell Responses, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
databases; design; machine learning; nanozymes; prediction; PEROXIDASE-LIKE ACTIVITY; SUPEROXIDE-DISMUTASE NANOZYMES; SINGLE-ATOM NANOZYMES; DISCOVERY; NETWORK; PREDICTION; CATALYSIS; KNOWLEDGE; SEQUENCE;
D O I
10.1002/adma.202210848
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanozymes are nanomaterials that exhibit enzyme-like biomimicry. In combination with intrinsic characteristics of nanomaterials, nanozymes have broad applicability in materials science, chemical engineering, bioengineering, biochemistry, and disease theranostics. Recently, the heterogeneity of published results has highlighted the complexity and diversity of nanozymes in terms of consistency of catalytic capacity. Machine learning (ML) shows promising potential for discovering new materials, yet it remains challenging for the design of new nanozymes based on ML approaches. Alternatively, ML is employed to promote optimization of intelligent design and application of catalytic materials and engineered enzymes. Incorporation of the successful ML algorithms used in the intelligent design of catalytic materials and engineered enzymes can concomitantly facilitate the guided development of next-generation nanozymes with desirable properties. Here, recent progress in ML, its utilization in the design of catalytic materials and enzymes, and how emergent ML applications serve as promising strategies to circumvent challenges associated with time-expensive and laborious testing in nanozyme research and development are summarized. The potential applications of successful examples of ML-aided catalytic materials and engineered enzymes in nanozyme design are also highlighted, with special focus on the unified aims in enhancing design and recapitulation of substrate selectivity and catalytic activity.
引用
收藏
页数:20
相关论文
共 126 条
[1]   Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics [J].
Ali, Arbab ;
Ovais, Muhammad ;
Zhou, Huige ;
Rui, Yukui ;
Chen, Chunying .
BIOMATERIALS, 2021, 275
[2]   EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation [J].
Amidi, Afshine ;
Amidi, Shervine ;
Vlachakis, Dimitrios ;
Megalooikonomou, Vasileios ;
Paragios, Nikos ;
Zacharaki, Evangelia, I .
PEERJ, 2018, 6
[3]   An Introduction to Machine Learning [J].
Badillo, Solveig ;
Banfai, Balazs ;
Birzele, Fabian ;
Davydov, Iakov I. ;
Hutchinson, Lucy ;
Kam-Thong, Tony ;
Siebourg-Polster, Juliane ;
Steiert, Bernhard ;
Zhang, Jitao David .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2020, 107 (04) :871-885
[4]   Highly Tunable Carrier Tunneling in Vertical Graphene-WS2-Graphene van der Waals Heterostructures [J].
Bai, Zongqi ;
Xiao, Yang ;
Luo, Qing ;
Li, Miaomiao ;
Peng, Gang ;
Zhu, Zhihong ;
Luo, Fang ;
Zhu, Mengjian ;
Qin, Shiqiao ;
Novoselov, Kostya .
ACS NANO, 2022, 16 (05) :7880-7889
[5]  
Bastanlar Y, 2014, METHODS MOL BIOL, V1107, P105, DOI 10.1007/978-1-62703-748-8_7
[6]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[7]   Emerging materials intelligence ecosystems propelled by machine learning [J].
Batra, Rohit ;
Song, Le ;
Ramprasad, Rampi .
NATURE REVIEWS MATERIALS, 2021, 6 (08) :655-678
[8]   Decision tree analysis of past publications on catalytic steam reforming to develop heuristics for high performance: A statistical review [J].
Baysal, Meltem ;
Gunay, M. Erdem ;
Yildirim, Ramazan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (01) :243-254
[9]   Perturbation Theory-Machine Learning Study of Zeolite Materials Desilication [J].
Blay, Vincent ;
Yokoi, Toshiyuki ;
Gonzalez-Diaz, Humbert .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (12) :2414-2419
[10]   A machine learning approach for reliable prediction of amino acid interactions and its application in the directed evolution of enantioselective enzymes [J].
Cadet, Frederic ;
Fontaine, Nicolas ;
Li, Guangyue ;
Sanchis, Joaquin ;
Chong, Matthieu Ng Fuk ;
Pandjaitan, Rudy ;
Vetrivel, Iyanar ;
Offmann, Bernard ;
Reetz, Manfred T. .
SCIENTIFIC REPORTS, 2018, 8