Excellent strength-ductility combination of Cr26Mn20Fe20Co20Ni14 high-entropy alloy at cryogenic temperatures

被引:35
作者
Gao, Xuzhou [1 ]
Jiang, Wei [1 ]
Lu, Yiping [2 ]
Ding, Zhigang [1 ]
Liu, Jizi [3 ]
Liu, Wei [1 ]
Sha, Gang [3 ]
Wang, Tongming [2 ]
Li, Tingju [2 ]
Chang, Isaac T. H. [4 ]
Zhao, Yonghao [1 ]
机构
[1] Nanjing Univ Sci & Technol, Nano & Heterogeneous Mat Ctr, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
[2] Dalian Univ Technol, Sch Mat Sci & Engn, Key Lab Solidificat Control & Digital Preparat Tec, Dalian 116024, Peoples R China
[3] Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Nanjing 210094, Peoples R China
[4] Brunel Univ London, Met & Head Liquid Met Engn LiME Doctoral Training, Brunel Ctr Adv Solidificat Technol BCAST, Uxbridge UB8 3PH, England
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2023年 / 154卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
High -entropy alloys; Strength and ductility; Cryogenic temperature; Twinning; Phase transformation; STACKING-FAULT ENERGY; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; DAMAGE-TOLERANCE; DEFORMATION; BEHAVIOR; DEPENDENCE; TOUGHNESS; MICROSTRUCTURE; EVOLUTION;
D O I
10.1016/j.jmst.2023.01.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present study, a face-centered cubic non-equiatomic Cr26Mn20Fe20Co20Ni14 high-entropy alloy (HEA) with a low stacking fault energy of 17.6 mJ m -2 was prepared by vacuum induction melting, forg-ing and annealing processes. The recrystallized sample is revealed to exhibit an excellent combination of strength and ductility over a wide temperature range of 4.2-293 K. With decreasing temperature from 293 to 77 K, the ductility and ultimate tensile strength (UTS) gradually increase by 30% to 95% and 137% to 1020 MPa, respectively. At the lowest temperature of 4.2 K, the ductility keeps 65% and the UTS in-creases by 200% to 1300 MPa, which exceed those published in the literature, including conventional 300 series stainless steels. Detailed microstructural analyses of this alloy reveal a change of deformation mechanisms from dislocation slip and nano-twinning at 293 K to nano-phase transformation at 4.2 K. The cooperation and competition of multiple nano-twinning and nano-phase transformation are responsible for the superior tensile properties at cryogenic temperatures. Our study provides experimental evidence for potential cryogenic applications of HEAs. (c) 2023 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:166 / 177
页数:12
相关论文
共 63 条
[1]   STRAIN-HARDENING OF HADFIELD MANGANESE STEEL [J].
ADLER, PH ;
OLSON, GB ;
OWEN, WS .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1986, 17 (10) :1725-1737
[2]  
Anderson J.P.H.P.M., 2011, THEORY DISLOCATIONS, V3rd, P263
[3]   A novel cobalt-free FeMnCrNi medium-entropy alloy with exceptional yield strength and ductility at cryogenic temperature [J].
Bian, B. B. ;
Guo, N. ;
Yang, H. J. ;
Guo, R. P. ;
Yang, L. ;
Wu, Y. C. ;
Qiao, J. W. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 827
[4]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[5]   Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate [J].
Curtze, S. ;
Kuokkala, V. -T. .
ACTA MATERIALIA, 2010, 58 (15) :5129-5141
[6]   Cryogenic strength and microstructure of a hydrostatically extruded austenitic steel 1.4429 (AISI 316LN) [J].
Czarkowski, P. ;
Krawczynska, A. T. ;
Brynk, T. ;
Nowacki, M. ;
Lewandowska, M. ;
Kurzydlowski, K. J. .
CRYOGENICS, 2014, 64 :1-4
[7]   Investigation of changes in the type B PLC effect of Al-Mg-Cu type alloy for various strain rates [J].
Darowicki, K. ;
Orlikowski, J. ;
Zielinski, A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 496 (1-2) :478-482
[8]   Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction [J].
De, AK ;
Murdock, DC ;
Mataya, MC ;
Speer, JG ;
Matlock, DK .
SCRIPTA MATERIALIA, 2004, 50 (12) :1445-1449
[9]   Twinning-induced plasticity (TWIP) steels [J].
De Cooman, Bruno C. ;
Estrin, Yuri ;
Kim, Sung Kyu .
ACTA MATERIALIA, 2018, 142 :283-362
[10]   Effect of microstructure on plastic deformation of Cu at low homologous temperatures [J].
Estrin, Y. ;
Isaev, N. V. ;
Lubenets, S. V. ;
Malykhin, S. V. ;
Pugachov, A. T. ;
Pustovalov, V. V. ;
Reshetnyak, E. N. ;
Fomenko, V. S. ;
Fomenko, L. S. ;
Shumilin, S. E. ;
Janecek, M. ;
Hellmig, R. J. .
ACTA MATERIALIA, 2006, 54 (20) :5581-5590