IntOMICS: A Bayesian Framework for Reconstructing Regulatory Networks Using Multi-Omics Data

被引:0
作者
Pacinkova, Anna [1 ,2 ]
Popovici, Vlad [1 ]
机构
[1] Masaryk Univ, Fac Sci, RECETOX, Kotlarska 2, Brno 61137, Czech Republic
[2] Masaryk Univ, Fac Informat, Brno, Czech Republic
基金
欧盟地平线“2020”;
关键词
Bayesian networks; integrative analysis; multi-omics; regulatory network;
D O I
10.1089/cmb.2022.0149
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Integration of multi-omics data can provide a more complex view of the biological system consisting of different interconnected molecular components. We present a new comprehensive R/Bioconductor-package, IntOMICS, which implements a Bayesian framework for multi-omics data integration. IntOMICS adopts a Markov Chain Monte Carlo sampling scheme to systematically analyze gene expression, copy number variation, DNA methylation, and biological prior knowledge to infer regulatory networks. The unique feature of IntOMICS is an empirical biological knowledge estimation from the available experimental data, which complements the missing biological prior knowledge. IntOMICS has the potential to be a powerful resource for exploratory systems biology.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [41] Multi-omics profiling reveals microRNA-mediated insulin signaling networks
    Lin, Yang-Chi-Dung
    Huang, Hsi-Yuan
    Shrestha, Sirjana
    Chou, Chih-Hung
    Chen, Yen-Hua
    Chen, Chi-Ru
    Hong, Hsiao-Chin
    Li, Jing
    Chang, Yi-An
    Chiew, Men-Yee
    Huang, Ya-Rong
    Tu, Siang-Jyun
    Sun, Ting-Hsuan
    Weng, Shun-Long
    Tseng, Ching-Ping
    Huang, Hsien-Da
    BMC BIOINFORMATICS, 2020, 21 (Suppl 13)
  • [42] Vertical and horizontal integration of multi-omics data with miodin
    Benjamin Ulfenborg
    BMC Bioinformatics, 20
  • [43] Stability of Feature Selection in Multi-Omics Data Analysis
    Lukaszuk, Tomasz
    Krawczuk, Jerzy
    Zyla, Kamil
    Kesik, Jacek
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [44] Deciphering Pleiotropic Signatures of Regulatory SNPs in Zea mays L. Using Multi-Omics Data and Machine Learning Algorithms
    Haleem, Ataul
    Klees, Selina
    Schmitt, Armin Otto
    Gueltas, Mehmet
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [45] Advances in omics data for eosinophilic esophagitis: moving towards multi-omics analyses
    Matsuyama, Kazuhiro
    Yamada, Shingo
    Sato, Hironori
    Zhan, Justin
    Shoda, Tetsuo
    JOURNAL OF GASTROENTEROLOGY, 2024, 59 (11) : 963 - 978
  • [46] Prioritization of risk genes in colorectal cancer by integrative analysis of multi-omics data and gene networks
    Ming Zhang
    Xiaoyang Wang
    Nan Yang
    Xu Zhu
    Zequn Lu
    Yimin Cai
    Bin Li
    Ying Zhu
    Xiangpan Li
    Yongchang Wei
    Shaokai Zhang
    Jianbo Tian
    Xiaoping Miao
    Science China Life Sciences, 2024, 67 : 132 - 148
  • [47] Prioritization of risk genes in colorectal cancer by integrative analysis of multi-omics data and gene networks
    Zhang, Ming
    Wang, Xiaoyang
    Yang, Nan
    Zhu, Xu
    Lu, Zequn
    Cai, Yimin
    Li, Bin
    Zhu, Ying
    Li, Xiangpan
    Wei, Yongchang
    Zhang, Shaokai
    Tian, Jianbo
    Miao, Xiaoping
    SCIENCE CHINA-LIFE SCIENCES, 2024, 67 (01) : 132 - 148
  • [48] Review of multi-omics data resources and integrative analysis for human brain disorders
    Dong, Xianjun
    Liu, Chunyu
    Dozmorov, Mikhail
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2021, 20 (04) : 223 - 234
  • [49] Network analyses in microbiome based on high-throughput multi-omics data
    Liu, Zhaoqian
    Ma, Anjun
    Mathe, Ewy
    Merling, Marlena
    Ma, Qin
    Liu, Bingqiang
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (02) : 1639 - 1655
  • [50] Integrative analysis of multi-omics and imaging data with incorporation of biological information via structural Bayesian factor analysis
    Bao, Jingxuan
    Chang, Changgee
    Zhang, Qiyiwen
    Saykin, Andrew J.
    Shen, Li
    Long, Qi
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (02)