IntOMICS: A Bayesian Framework for Reconstructing Regulatory Networks Using Multi-Omics Data

被引:0
作者
Pacinkova, Anna [1 ,2 ]
Popovici, Vlad [1 ]
机构
[1] Masaryk Univ, Fac Sci, RECETOX, Kotlarska 2, Brno 61137, Czech Republic
[2] Masaryk Univ, Fac Informat, Brno, Czech Republic
基金
欧盟地平线“2020”;
关键词
Bayesian networks; integrative analysis; multi-omics; regulatory network;
D O I
10.1089/cmb.2022.0149
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Integration of multi-omics data can provide a more complex view of the biological system consisting of different interconnected molecular components. We present a new comprehensive R/Bioconductor-package, IntOMICS, which implements a Bayesian framework for multi-omics data integration. IntOMICS adopts a Markov Chain Monte Carlo sampling scheme to systematically analyze gene expression, copy number variation, DNA methylation, and biological prior knowledge to infer regulatory networks. The unique feature of IntOMICS is an empirical biological knowledge estimation from the available experimental data, which complements the missing biological prior knowledge. IntOMICS has the potential to be a powerful resource for exploratory systems biology.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [31] Identification of pivotal genes and regulatory networks associated with SAH based on multi-omics analysis and machine learning
    Haoran Lu
    Teng Xie
    Xiaohong Qin
    Shanshan Wei
    Zilong Zhao
    Xizhi Liu
    Liquan Wu
    Rui Ding
    Zhibiao Chen
    Scientific Reports, 15 (1)
  • [32] Integrating multi-omics data of childhood asthma using a deep association model
    Wei, Kai
    Qian, Fang
    Li, Yixue
    Zeng, Tao
    Huang, Tao
    FUNDAMENTAL RESEARCH, 2024, 4 (04): : 738 - 751
  • [33] Combining Partially Overlapping Multi-Omics Data in Databases Using Relationship Matrices
    Akdemir, Deniz
    Knox, Ron
    Isidro y Sanchez, Julio
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [34] Prospects and challenges of multi-omics data integration in toxicology
    Sebastian Canzler
    Jana Schor
    Wibke Busch
    Kristin Schubert
    Ulrike E. Rolle-Kampczyk
    Hervé Seitz
    Hennicke Kamp
    Martin von Bergen
    Roland Buesen
    Jörg Hackermüller
    Archives of Toxicology, 2020, 94 : 371 - 388
  • [35] Methods for the integration of multi-omics data: mathematical aspects
    Bersanelli, Matteo
    Mosca, Ettore
    Remondini, Daniel
    Giampieri, Enrico
    Sala, Claudia
    Castellani, Gastone
    Milanesi, Luciano
    BMC BIOINFORMATICS, 2016, 17
  • [36] Multi-omics Data Integration, Interpretation, and Its Application
    Subramanian, Indhupriya
    Verma, Srikant
    Kumar, Shiva
    Jere, Abhay
    Anamika, Krishanpal
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2020, 14
  • [37] Methods for the integration of multi-omics data: mathematical aspects
    Matteo Bersanelli
    Ettore Mosca
    Daniel Remondini
    Enrico Giampieri
    Claudia Sala
    Gastone Castellani
    Luciano Milanesi
    BMC Bioinformatics, 17
  • [38] Vertical and horizontal integration of multi-omics data with miodin
    Ulfenborg, Benjamin
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [39] Prospects and challenges of multi-omics data integration in toxicology
    Canzler, Sebastian
    Schor, Jana
    Busch, Wibke
    Schubert, Kristin
    Rolle-Kampczyk, Ulrike E.
    Seitz, Herve
    Kamp, Hennicke
    von Bergen, Martin
    Buesen, Roland
    Hackermueller, Joerg
    ARCHIVES OF TOXICOLOGY, 2020, 94 (02) : 371 - 388
  • [40] Approaches to Integrating Metabolomics and Multi-Omics Data: A Primer
    Jendoubi, Takoua
    METABOLITES, 2021, 11 (03)