IntOMICS: A Bayesian Framework for Reconstructing Regulatory Networks Using Multi-Omics Data

被引:0
作者
Pacinkova, Anna [1 ,2 ]
Popovici, Vlad [1 ]
机构
[1] Masaryk Univ, Fac Sci, RECETOX, Kotlarska 2, Brno 61137, Czech Republic
[2] Masaryk Univ, Fac Informat, Brno, Czech Republic
基金
欧盟地平线“2020”;
关键词
Bayesian networks; integrative analysis; multi-omics; regulatory network;
D O I
10.1089/cmb.2022.0149
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Integration of multi-omics data can provide a more complex view of the biological system consisting of different interconnected molecular components. We present a new comprehensive R/Bioconductor-package, IntOMICS, which implements a Bayesian framework for multi-omics data integration. IntOMICS adopts a Markov Chain Monte Carlo sampling scheme to systematically analyze gene expression, copy number variation, DNA methylation, and biological prior knowledge to infer regulatory networks. The unique feature of IntOMICS is an empirical biological knowledge estimation from the available experimental data, which complements the missing biological prior knowledge. IntOMICS has the potential to be a powerful resource for exploratory systems biology.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [21] SUBATOMIC: a SUbgraph BAsed mulTi-OMIcs clustering framework to analyze integrated multi-edge networks
    Loers, Jens Uwe
    Vermeirssen, Vanessa
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [22] SUBATOMIC: a SUbgraph BAsed mulTi-OMIcs clustering framework to analyze integrated multi-edge networks
    Jens Uwe Loers
    Vanessa Vermeirssen
    BMC Bioinformatics, 23
  • [23] Representation Learning for the Clustering of Multi-Omics Data
    Viaud, Gautier
    Mayilvahanan, Prasanna
    Cournede, Paul-Henry
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (01) : 135 - 145
  • [24] Using machine learning approaches for multi-omics data analysis: A review
    Reel, Parminder S.
    Reel, Smarti
    Pearson, Ewan
    Trucco, Emanuele
    Jefferson, Emily
    BIOTECHNOLOGY ADVANCES, 2021, 49
  • [25] The Strategies and Progression in The Stratification of Hepatocellular Carcinoma Using Multi-omics Data
    Wang, Meng
    Li, Xiao-Qin
    Gao, Bin
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2023, 50 (07) : 1651 - 1663
  • [26] Multi-omics Multi-scale Big Data Analytics for Cancer Genomics
    Agarwal, Mahima
    Adhil, Mohamood
    Talukder, Asoke K.
    BIG DATA ANALYTICS, BDA 2015, 2015, 9498 : 228 - 243
  • [27] Construction of sRNA Regulatory Network for Magnaporthe oryzae Infecting Rice Based on Multi-Omics Data
    Zhao, Enshuang
    Zhang, Hao
    Li, Xueqing
    Zhao, Tianheng
    Zhao, Hengyi
    FRONTIERS IN GENETICS, 2021, 12
  • [28] Network reconstruction for trans acting genetic loci using multi-omics data and prior information
    Hawe, Johann S.
    Saha, Ashis
    Waldenberger, Melanie
    Kunze, Sonja
    Wahl, Simone
    Mueller-Nurasyid, Martina
    Prokisch, Holger
    Grallert, Harald
    Herder, Christian
    Peters, Annette
    Strauch, Konstantin
    Theis, Fabian J.
    Gieger, Christian
    Chambers, John
    Battle, Alexis
    Heinig, Matthias
    GENOME MEDICINE, 2022, 14 (01)
  • [29] Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
    Werhli, Adriano V.
    Husmeier, Dirk
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2007, 6
  • [30] Geometric graph neural networks on multi-omics data to predict cancer survival outcomes
    Zhu, Jiening
    Oh, Jung Hun
    Simhal, Anish K.
    Elkin, Rena
    Norton, Larry
    Deasy, Joseph O.
    Tannenbaum, Allen
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163