IntOMICS: A Bayesian Framework for Reconstructing Regulatory Networks Using Multi-Omics Data

被引:0
作者
Pacinkova, Anna [1 ,2 ]
Popovici, Vlad [1 ]
机构
[1] Masaryk Univ, Fac Sci, RECETOX, Kotlarska 2, Brno 61137, Czech Republic
[2] Masaryk Univ, Fac Informat, Brno, Czech Republic
基金
欧盟地平线“2020”;
关键词
Bayesian networks; integrative analysis; multi-omics; regulatory network;
D O I
10.1089/cmb.2022.0149
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Integration of multi-omics data can provide a more complex view of the biological system consisting of different interconnected molecular components. We present a new comprehensive R/Bioconductor-package, IntOMICS, which implements a Bayesian framework for multi-omics data integration. IntOMICS adopts a Markov Chain Monte Carlo sampling scheme to systematically analyze gene expression, copy number variation, DNA methylation, and biological prior knowledge to infer regulatory networks. The unique feature of IntOMICS is an empirical biological knowledge estimation from the available experimental data, which complements the missing biological prior knowledge. IntOMICS has the potential to be a powerful resource for exploratory systems biology.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [11] Visual analysis of multi-omics data
    Swart, Austin
    Caspi, Ron
    Paley, Suzanne
    Karp, Peter D.
    FRONTIERS IN BIOINFORMATICS, 2024, 4
  • [12] Consistency and overfitting of multi-omics methods on experimental data
    McCabe, Sean D.
    Lin, Dan-Yu
    Love, Michael, I
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) : 1277 - 1284
  • [13] JOB: Japan Omics Browser provides integrative visualization of multi-omics data
    Yugo Takahashi
    Qingbo S. Wang
    Takanori Hasegawa
    Ho Namkoong
    Fumitaka Inoue
    Koichi Fukunaga
    Seiya Imoto
    Satoru Miyano
    Yukinori Okada
    BMC Genomics, 26 (1)
  • [14] A roadmap for multi-omics data integration using deep learning
    Kang, Mingon
    Ko, Euiseong
    Mersha, Tesfaye B.
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [15] Breast Cancer Recurrence Risk Predictor Using a Deep Learning Multi-omics Data Integration Framework
    Rahman, Ariana
    Zhang, Yining
    Park, Jin G.
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 921 - 922
  • [16] The Omics Dashboard for Interactive Exploration of Metabolomics and Multi-Omics Data
    Paley, Suzanne
    Karp, Peter D.
    METABOLITES, 2024, 14 (01)
  • [17] Multi-view clustering for multi-omics data using unified embedding
    Mitra, Sayantan
    Saha, Sriparna
    Hasanuzzaman, Mohammed
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [18] Estimating genome-wide regulatory activity from multi-omics data sets using mathematical optimization
    Trescher, Saskia
    Muenchmeyer, Jannes
    Leser, Ulf
    BMC SYSTEMS BIOLOGY, 2017, 11
  • [19] Amogel: a multi-omics classification framework using associative graph neural networks with prior knowledge for biomarker identification
    Tan, Chia Yan
    Ong, Huey Fang
    Lim, Chern Hong
    Tan, Mei Sze
    Ooi, Ean Hin
    Wong, Koksheik
    BMC BIOINFORMATICS, 2025, 26 (01):
  • [20] Towards multi-omics synthetic data integration
    Selvarajoo, Kumar
    Maurer-Stroh, Sebastian
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)