IntOMICS: A Bayesian Framework for Reconstructing Regulatory Networks Using Multi-Omics Data

被引:0
作者
Pacinkova, Anna [1 ,2 ]
Popovici, Vlad [1 ]
机构
[1] Masaryk Univ, Fac Sci, RECETOX, Kotlarska 2, Brno 61137, Czech Republic
[2] Masaryk Univ, Fac Informat, Brno, Czech Republic
基金
欧盟地平线“2020”;
关键词
Bayesian networks; integrative analysis; multi-omics; regulatory network;
D O I
10.1089/cmb.2022.0149
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Integration of multi-omics data can provide a more complex view of the biological system consisting of different interconnected molecular components. We present a new comprehensive R/Bioconductor-package, IntOMICS, which implements a Bayesian framework for multi-omics data integration. IntOMICS adopts a Markov Chain Monte Carlo sampling scheme to systematically analyze gene expression, copy number variation, DNA methylation, and biological prior knowledge to infer regulatory networks. The unique feature of IntOMICS is an empirical biological knowledge estimation from the available experimental data, which complements the missing biological prior knowledge. IntOMICS has the potential to be a powerful resource for exploratory systems biology.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] IntOMICS: A Bayesian Framework for Reconstructing Regulatory Networks Using Multi-Omics Data
    Pacinkova, Anna
    Popovici, Vlad
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (05) : 569 - 574
  • [2] Inferring Interaction Networks From Multi-Omics Data
    Hawe, Johann S.
    Theis, Fabian J.
    Heinig, Matthias
    FRONTIERS IN GENETICS, 2019, 10
  • [3] Using empirical biological knowledge to infer regulatory networks from multi-omics data (vol 23, 351, 2022)
    Pacinkova, Anna
    Popovici, Vlad
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [4] Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
    Argelaguet, Ricard
    Velten, Britta
    Arnol, Damien
    Dietrich, Sascha
    Zenz, Thorsten
    Marioni, John C.
    Buettner, Florian
    Huber, Wolfgang
    Stegle, Oliver
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
  • [5] Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application
    Shahrajabian, Mohamad Hesam
    Sun, Wenli
    CURRENT PHARMACEUTICAL ANALYSIS, 2023, 19 (04) : 267 - 281
  • [6] Generalized Bayesian Factor Analysis for Integrative Clustering with Applications to Multi-Omics Data
    Min, Eun Jeong
    Chang, Changgee
    Long, Qi
    2018 IEEE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2018, : 109 - 119
  • [7] Self-omics: A Self-supervised Learning Framework for Multi-omics Cancer Data
    Hashim, Sayed
    Nandakumar, Karthik
    Yaqub, Mohammad
    BIOCOMPUTING 2023, PSB 2023, 2023, : 263 - 274
  • [8] Integrative approaches to reconstruct regulatory networks from multi-omics data: A review of state-of-the-art methods
    Wani, Nisar
    Raza, Khalid
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2019, 83
  • [9] Integration of Multi-Omics Data Using Probabilistic Graph Models and External Knowledge
    Tripp, Bridget A.
    Otu, Hasan H.
    CURRENT BIOINFORMATICS, 2022, 17 (01) : 37 - 47
  • [10] A practical data processing workflow for multi-OMICS projects
    Kohl, Michael
    Megger, Dominik A.
    Trippler, Martin
    Meckel, Hagen
    Ahrens, Maike
    Bracht, Thilo
    Weber, Frank
    Hoffmann, Andreas-Claudius
    Baba, Hideo A.
    Sitek, Barbara
    Schlaak, Joerg F.
    Meyer, Helmut E.
    Stephan, Christian
    Eisenacher, Martin
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2014, 1844 (01): : 52 - 62