Stability for Euler-Bernoulli Beam Equation with a Local Degenerated Kelvin-Voigt Damping

被引:2
|
作者
Hassine, Fathi [1 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, UR Anal & Control PDEs,UR 13ES64, Monastir, Tunisia
关键词
Polynomial stability; Degenerate Kelvin-Voigt damping; ELASTIC-SYSTEMS; WAVE-EQUATIONS; DECAY; ENERGY; STABILIZATION; ANALYTICITY; PLATE;
D O I
10.1007/s10440-023-00559-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Euler-Bernoulli beam equation with a local Kelvin-Voigt dissipation type in the interval (-1, 1). The coefficient damping is only effective in (0, 1) and is degenerating near the 0 point with a speed at least equal to x alpha where alpha is an element of (0, 5). We prove that the semigroup corresponding to the system is polynomially stable and the decay rate depends on the degeneracy speed alpha. Here we develop a new method which consists to use a local analysis approach combined with the classical iterative method.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Stability for Euler-Bernoulli Beam Equation with a Local Degenerated Kelvin-Voigt Damping
    Fathi Hassine
    Acta Applicandae Mathematicae, 2023, 184
  • [2] On the spectrum of Euler-Bernoulli beam equation with Kelvin-Voigt damping
    Zhang, Guo-Dong
    Guo, Bao-Zhu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (01) : 210 - 229
  • [3] A Numerical Method of the Euler-Bernoulli Beam with Optimal Local Kelvin-Voigt Damping
    Yu, Xin
    Ren, Zhigang
    Zhang, Qian
    Xu, Chao
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [4] ASYMPTOTIC BEHAVIOR OF THE TRANSMISSION EULER-BERNOULLI PLATE AND WAVE EQUATION WITH A LOCALIZED KELVIN-VOIGT DAMPING
    Hassine, Fathi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (06): : 1757 - 1774
  • [5] Sharp stability of a string with local degenerate Kelvin-Voigt damping
    Han, Zhong-Jie
    Liu, Zhuangyi
    Zhang, Qiong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (10):
  • [6] Stability of a Timoshenko system with local Kelvin-Voigt damping
    Tian, Xinhong
    Zhang, Qiong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01):
  • [7] STABILITY AND REGULARITY OF SOLUTION TO THE TIMOSHENKO BEAM EQUATION WITH LOCAL KELVIN-VOIGT DAMPING
    Liu, Zhuangyi
    Zhang, Qiong
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (06) : 3919 - 3947
  • [8] ENERGY DECAY OF SOME BOUNDARY COUPLED SYSTEMS INVOLVING WAVE\ EULER-BERNOULLI BEAM WITH ONE LOCALLY SINGULAR FRACTIONAL KELVIN-VOIGT DAMPING
    Akil, Mohammad
    Issa, Ibtissam
    Wehbe, Ali
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2021, : 330 - 381
  • [9] Stability of the Timoshenko beam equation with one weakly degenerate local Kelvin-Voigt damping
    Liu, Ruijuan
    Zhang, Qiong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2025, 105 (03):
  • [10] Stability Results for a Laminated Beam with Kelvin-Voigt Damping
    Ramos, A. J. A.
    Freitas, M. M.
    Cabanillas, V. R.
    Dos Santos, M. J.
    Raposo, C. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (05)