Fine-grained transfer learning based on deep feature decomposition for rotating equipment fault diagnosis

被引:12
作者
Dong, Jingchuan [1 ]
Su, Depeng [1 ]
Gao, Yubo [1 ]
Wu, Xiaoxin [1 ]
Jiang, Hongyu [1 ]
Chen, Tao [1 ]
机构
[1] Tianjin Univ, Sch Mech Engn, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
transfer learning; rotating equipment; deep feature decomposition; fault diagnosis; deep learning; MODEL; MACHINERY; ROBUST; NETWORK;
D O I
10.1088/1361-6501/acc04a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The study of transfer learning in rotating equipment fault diagnosis helps overcome the problem of low sample marker data and accelerates the practical application of diagnostic algorithms. Previously reported methods still require numerous fault data samples; however, it is unrealistic to obtain information about the different health states of rotating equipment under all operating conditions. In this paper, a two-stage, fine-grained, fault diagnosis framework is proposed for implementing fault diagnosis across domains of rotating equipment under the condition of no target domain data. Considering that the target domain is completely unknown, the main idea of this paper is to decompose multiple source domain depth features to identify domain-invariant categorical features common under different source domains and classify unknown target domains. More impressively, the problems of data imbalance and low signal-to-noise ratio can be properly solved in our network. Extensive experiments are conducted in two different case studies of rotating devices to validate the proposed method. The experiments show that the method in this paper achieves significant results on both bearing and gearbox health status classification tasks, outperforming other deep transfer learning methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Fine-Grained Image Classification Based on Feature Fusion and Ensemble Learning
    Zhang, Wenli
    Wei, Song
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (22)
  • [32] A Multimodal Feature Fusion-Based Deep Learning Method for Online Fault Diagnosis of Rotating Machinery
    Zhou, Funa
    Hu, Po
    Yang, Shuai
    Wen, Chenglin
    SENSORS, 2018, 18 (10)
  • [33] A novel deep neural network based on an unsupervised feature learning method for rotating machinery fault diagnosis
    Cheng, Chun
    Liu, Wenyi
    Wang, Weiping
    Pecht, Michael
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (09)
  • [34] Transfer learning for fine-grained entity typing
    Hou, Feng
    Wang, Ruili
    Zhou, Yi
    KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 63 (04) : 845 - 866
  • [35] Transfer learning for fine-grained entity typing
    Feng Hou
    Ruili Wang
    Yi Zhou
    Knowledge and Information Systems, 2021, 63 : 845 - 866
  • [36] A novel transfer learning fault diagnosis method for rolling bearing based on feature correlation matching
    Wang, Bo
    Wang, Baoqiang
    Ning, Yi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (12)
  • [37] Fine-Grained Categorization Using a Mixture of Transfer Learning Networks
    Firsching, Justin
    Hashem, Sherif
    PROCEEDINGS OF THE FUTURE TECHNOLOGIES CONFERENCE (FTC) 2021, VOL 2, 2022, 359 : 151 - 158
  • [38] Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
    Li, Chuan
    Sanchez, Rene-Vinicio
    Zurita, Grover
    Cerrada, Mariela
    Cabrera, Diego
    SENSORS, 2016, 16 (06)
  • [39] Recognition method for fine-grained product styles based on deep learning
    Li X.
    Su J.
    Zhang Z.
    Zhu D.
    Yu B.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (03): : 1011 - 1022
  • [40] VulDeeLocator: A Deep Learning-Based Fine-Grained Vulnerability Detector
    Li, Zhen
    Zou, Deqing
    Xu, Shouhuai
    Chen, Zhaoxuan
    Zhu, Yawei
    Jin, Hai
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (04) : 2821 - 2837