Predicting adolescent depression and anxiety from multi-wave longitudinal data using machine learning

被引:15
作者
Hawes, Mariah T. [1 ]
Schwartz, H. Andrew [2 ]
Son, Youngseo [2 ]
Klein, Daniel N. [1 ]
机构
[1] SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
关键词
adolescence; anxiety; depression; longitudinal; machine learning; risk assessment; AGE-OF-ONSET; MAJOR DEPRESSION; PSYCHOSOCIAL OUTCOMES; CLINICAL-PSYCHOLOGY; MENTAL-HEALTH; ALGORITHM; DISORDERS; VALIDATION; RISK; PREVALENCE;
D O I
10.1017/S0033291722003452
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Background This study leveraged machine learning to evaluate the contribution of information from multiple developmental stages to prospective prediction of depression and anxiety in mid-adolescence. Methods A community sample (N = 374; 53.5% male) of children and their families completed tri-annual assessments across ages 3-15. The feature set included several important risk factors spanning psychopathology, temperament/personality, family environment, life stress, interpersonal relationships, neurocognitive, hormonal, and neural functioning, and parental psychopathology and personality. We used canonical correlation analysis (CCA) to reduce the large feature set to a lower dimensional space while preserving the longitudinal structure of the data. Ablation analysis was conducted to evaluate the relative contributions to prediction of information gathered at different developmental periods and relative to previous disorder status (i.e. age 12 depression or anxiety) and demographics (sex, race, ethnicity). Results CCA components from individual waves predicted age 15 disorder status better than chance across ages 3, 6, 9, and 12 for anxiety and 9 and 12 for depression. Only the components from age 12 for depression, and ages 9 and 12 for anxiety, improved prediction over prior disorder status and demographics. Conclusions These findings suggest that screening for risk of adolescent depression can be successful as early as age 9, while screening for risk of adolescent anxiety can be successful as early as age 3. Assessing additional risk factors at age 12 for depression, and going back to age 9 for anxiety, can improve screening for risk at age 15 beyond knowing standard demographics and disorder history.
引用
收藏
页码:6205 / 6211
页数:7
相关论文
共 44 条
[1]  
American Psychiatric Association, 1994, Diagnostic and statistical manual of mental disorders, V4th ed., DOI [DOI 10.1176/APPI.BOOKS.9780890425596, 10.1176/appi.books.9780890425596]
[2]   Predicting women with depressive symptoms postpartum with machine learning methods [J].
Andersson, Sam ;
Bathula, Deepti R. ;
Iliadis, Stavros I. ;
Walter, Martin ;
Skalkidou, Alkistis .
SCIENTIFIC REPORTS, 2021, 11 (01)
[3]  
Axelson D., 2009, SCHEDULE AFFECTIVE D
[4]   Anxiety and Anxiety Disorders in Children and Adolescents: Developmental Issues and Implications for DSM-V [J].
Beesdo, Katja ;
Knappe, Susanne ;
Pine, Daniel S. .
PSYCHIATRIC CLINICS OF NORTH AMERICA, 2009, 32 (03) :483-+
[5]   Predicting the onset of major depression in primary care: international validation of a risk prediction algorithm from Spain [J].
Bellon, J. A. ;
Luna, J. de Dios ;
King, M. ;
Moreno-Kuestner, B. ;
Nazareth, I. ;
Monton-Franco, C. ;
GildeGomez-Barragan, M. J. ;
Sanchez-Celaya, M. ;
Diaz-Barreiros, M. A. ;
Vicens, C. ;
Cervilla, J. A. ;
Svab, I. ;
Maaroos, H. -I. ;
Xavier, M. ;
Geerlings, M. I. ;
Saldivia, S. ;
Gutierrez, B. ;
Motrico, E. ;
Martinez-Canavate, M. T. ;
Olivan-Blazquez, B. ;
Sanchez-Artiaga, M. S. ;
March, S. ;
Munoz-Garcia, M. del Mar ;
Vazquez-Medrano, A. ;
Moreno-Peral, P. ;
Torres-Gonzalez, F. .
PSYCHOLOGICAL MEDICINE, 2011, 41 (10) :2075-2088
[6]   The relevance of age of onset to the psychopathology of generalized anxiety disorder [J].
Campbell, LA ;
Brown, NA ;
Grisham, JR .
BEHAVIOR THERAPY, 2003, 34 (01) :31-48
[7]   Longitudinal Assessment of Mental Health Disorders and Comorbidities Across 4 Decades Among Participants in the Dunedin Birth Cohort Study [J].
Caspi, Avshalom ;
Houts, Renate M. ;
Ambler, Antony ;
Danese, Andrea ;
Elliott, Maxwell L. ;
Hariri, Ahmad ;
Harrington, HonaLee ;
Hogan, Sean ;
Poulton, Richie ;
Ramrakha, Sandhya ;
Rasmussen, Line J. Hartmann ;
Reuben, Aaron ;
Richmond-Rakerd, Leah ;
Sugden, Karen ;
Wertz, Jasmin ;
Williams, Benjamin S. ;
Moffitt, Terrie E. .
JAMA NETWORK OPEN, 2020, 3 (04) :e203221
[8]  
Coutanche MN, 2020, CAMB HANDB PSYCHOL, P467
[9]   The Age of Onset of Anxiety Disorders: A Meta-analysis [J].
de Lijster, Jasmijn M. ;
Dierckx, Bram ;
Utens, Elisabeth M. W. J. ;
Verhulst, Frank C. ;
Zieldorff, Carola ;
Dieleman, Gwen C. ;
Legerstee, Jeroen S. .
CANADIAN JOURNAL OF PSYCHIATRY-REVUE CANADIENNE DE PSYCHIATRIE, 2017, 62 (04) :237-246
[10]  
Dwyer DB, 2018, ANNU REV CLIN PSYCHO, V14, P91, DOI [10.1146/annurev-clinpsy-032816045037, 10.1146/annurev-clinpsy-032816-045037]