Performance Evaluation of Composite Electrolyte with GQD for All-Solid-State Lithium Batteries

被引:0
|
作者
Hwang, Sung Won [1 ]
Hong, Dae-Ki [1 ]
机构
[1] SangMyung Univ, Dept Syst Semicond Engn, Cheonan Si 31066, South Korea
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 74卷 / 01期
关键词
Solid-state; lithium batteries; composite electrolyte; quantum dot; graphene; LIQUID ELECTROLYTE; INTERPHASE; CONDUCTION; STABILITY; GERMANIUM; TRANSPORT; GRAPHENE; POLYMER;
D O I
10.32604/cmc.2023.028845
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use a stabilized lithium structure as cathode material for batteries could be a fundamental alternative in the development of next-generation energy storage devices. However, the lithium structure severely limits battery life causes safety concerns due to the growth of lithium (Li) dendrites during rapid charge/discharge cycles. Solid electrolytes, which are used in highdensity energy storage devices and avoid the instability of liquid electrolytes, can be a promising alternative for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, through the application of a low-dimensional graphene quantum dot (GQD) layer structure, stable operation characteristics were demonstrated based on Li+ ion conductivity and excellent electrochemical performance. Moreover, the device based on the modified graphene quantum dots (GQDs) in solid state exhibited retention properties of 95.3% for 100 cycles at 0.5 C and room temperature (RT). Transmission electron microscopy analysis was performed to elucidate the Li+ ion action mechanism in the modified GQD/electrolyte heterostructure. The low-dimensional structure of the GQD-based solid electrolyte has provided an important strategy for stably-scalable solid-state lithium battery applications at room temperature. It was demonstrated that lithiated graphene quantum dots (Li-GQDs) inhibit the growth of Li dendrites by regulating the modified Li+ ion flux during charge/discharge cycling at current densities of 2.2???5.5 mA cm, acting as a modified Li diffusion heterointerface. A full Li GQDbased device was fabricated to demonstrate the practicality of the modified Li structure using the Li???GQD hetero-interface. This study indicates that the low-dimensional carbon structure in Li???GQDs can be an effective approach for stabilization of solid-state Li matrix architecture.
引用
收藏
页码:55 / 66
页数:12
相关论文
共 50 条
  • [41] Lithium nitridonickelate as anode coupled with argyrodite electrolyte for all-solid-state lithium-ion batteries
    Qu, Yaxin
    Mateos, Mickael
    Emery, Nicolas
    Cuevas, Fermin
    Mercier, Dimitri
    Zanna, Sandrine
    Agustin, Rios de Anda
    Meziani, Narimane
    Zhang, Junxian
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [42] A dynamic database of solid-state electrolyte (DDSE) picturing all-solid-state batteries
    Yang, Fangling
    dos Santos, Egon Campos
    Jia, Xue
    Sato, Ryuhei
    Kisu, Kazuaki
    Hashimoto, Yusuke
    Orimo, Shin-ichi
    Li, Hao
    NANO MATERIALS SCIENCE, 2024, 6 (02) : 256 - 262
  • [43] Inducing interfacial progress based on a new sulfide-based composite electrolyte for all-solid-state lithium batteries
    Zhang, Hui
    Li, Xiaohe
    Hao, Shimeng
    Zhang, Xian
    Lin, Junpin
    ELECTROCHIMICA ACTA, 2019, 325
  • [44] Ambient-Temperature All-Solid-State Sodium Batteries with a Laminated Composite Electrolyte
    Yu, Xingwen
    Xue, Leigang
    Goodenough, John B.
    Manthiram, Arumugam
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (02)
  • [45] A Dynamically Stable Sulfide Electrolyte Architecture for High-Performance All-Solid-State Lithium Metal Batteries
    Wang, Xinyang
    Jiang, Wei
    Zhu, Xinxin
    Li, Siyuan
    Zhang, Shichao
    Wu, Qian
    Zhang, Jiahui
    Zhong, Wei
    Zhao, Shu
    Cheng, Hao
    Tan, Yuanzhong
    Ling, Min
    Lu, Yingying
    SMALL, 2024, 20 (22)
  • [46] Stable Binder Boosting Sulfide Solid Electrolyte Thin Membrane for All-Solid-State Lithium Batteries
    Zhao, Xiaolei
    Shen, Lin
    Zhang, Nini
    Yang, Jing
    Liu, Gaozhan
    Wu, Jinghua
    Yao, Xiayin
    ENERGY MATERIAL ADVANCES, 2024, 5
  • [47] Interfacial challenges in all-solid-state lithium batteries
    Huang, Yonglin
    Shao, Bowen
    Han, Fudong
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 33
  • [48] Tailored architecture of composite electrolyte for all-solid-state sodium batteries with superior rate performance and cycle life
    Guan, Xiang
    Jian, Zhenhua
    Liao, Xingan
    Liao, Wenchao
    Huang, Yanfei
    Chen, Dazhu
    Li, Robert K. Y.
    Liu, Chen
    NANO RESEARCH, 2024, 17 (05) : 4171 - 4180
  • [49] Tailored architecture of composite electrolyte for all-solid-state sodium batteries with superior rate performance and cycle life
    Xiang Guan
    Zhenhua Jian
    Xingan Liao
    Wenchao Liao
    Yanfei Huang
    Dazhu Chen
    Robert K. Y. Li
    Chen Liu
    Nano Research, 2024, 17 : 4171 - 4180
  • [50] Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries
    Lua, Fei
    Li, Gaoran
    Yu, Yang
    Gao, Xinpei
    Zheng, Liqiang
    Chen, Zhongwei
    CHEMICAL ENGINEERING JOURNAL, 2020, 384