Performance Evaluation of Composite Electrolyte with GQD for All-Solid-State Lithium Batteries

被引:0
|
作者
Hwang, Sung Won [1 ]
Hong, Dae-Ki [1 ]
机构
[1] SangMyung Univ, Dept Syst Semicond Engn, Cheonan Si 31066, South Korea
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 74卷 / 01期
关键词
Solid-state; lithium batteries; composite electrolyte; quantum dot; graphene; LIQUID ELECTROLYTE; INTERPHASE; CONDUCTION; STABILITY; GERMANIUM; TRANSPORT; GRAPHENE; POLYMER;
D O I
10.32604/cmc.2023.028845
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use a stabilized lithium structure as cathode material for batteries could be a fundamental alternative in the development of next-generation energy storage devices. However, the lithium structure severely limits battery life causes safety concerns due to the growth of lithium (Li) dendrites during rapid charge/discharge cycles. Solid electrolytes, which are used in highdensity energy storage devices and avoid the instability of liquid electrolytes, can be a promising alternative for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, through the application of a low-dimensional graphene quantum dot (GQD) layer structure, stable operation characteristics were demonstrated based on Li+ ion conductivity and excellent electrochemical performance. Moreover, the device based on the modified graphene quantum dots (GQDs) in solid state exhibited retention properties of 95.3% for 100 cycles at 0.5 C and room temperature (RT). Transmission electron microscopy analysis was performed to elucidate the Li+ ion action mechanism in the modified GQD/electrolyte heterostructure. The low-dimensional structure of the GQD-based solid electrolyte has provided an important strategy for stably-scalable solid-state lithium battery applications at room temperature. It was demonstrated that lithiated graphene quantum dots (Li-GQDs) inhibit the growth of Li dendrites by regulating the modified Li+ ion flux during charge/discharge cycling at current densities of 2.2???5.5 mA cm, acting as a modified Li diffusion heterointerface. A full Li GQDbased device was fabricated to demonstrate the practicality of the modified Li structure using the Li???GQD hetero-interface. This study indicates that the low-dimensional carbon structure in Li???GQDs can be an effective approach for stabilization of solid-state Li matrix architecture.
引用
收藏
页码:55 / 66
页数:12
相关论文
共 50 条
  • [31] A High-Voltage Hybrid Solid Electrolyte Based on Polycaprolactone for High-Performance all-Solid-State Flexible Lithium Batteries
    Li, Yuhang
    Liu, Min
    Duan, Shanshan
    Liu, Zixian
    Hou, Shuen
    Tian, Xiaocong
    Cao, Guozhong
    Jin, Hongyun
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (03): : 2318 - 2326
  • [32] Polyoxymethylene-based solid polymer electrolyte for high-performance room-temperature all-solid-state lithium batteries
    Ma, Yinxing
    Wu, Lizhen
    Zhou, Qiang
    Lin, Xinping
    Lin, Shumin
    Zhang, Jinmeng
    Zhao, Yanan
    Cai, Zhouqishuo
    Lin, Zewen
    Bai, Hua
    JOURNAL OF POWER SOURCES, 2024, 614
  • [33] Solvent-Free Synthesis of Thin, Flexible, Nonflammable Garnet-Based Composite Solid Electrolyte for All-Solid-State Lithium Batteries
    Jiang, Taoli
    He, Pingge
    Wang, Guoxu
    Shen, Yang
    Nan, Ce-Wen
    Fan, Li-Zhen
    ADVANCED ENERGY MATERIALS, 2020, 10 (12)
  • [34] Plastic crystals: An effective ambient temperature all-solid-state electrolyte for lithium batteries
    He, XM
    Pu, WH
    Wang, L
    Jiang, CY
    Wan, CR
    PROGRESS IN CHEMISTRY, 2006, 18 (01) : 24 - 29
  • [35] π-d conjugation regulates the cathode/electrolyte interface in all-solid-state lithium-ion batteries
    Zheng, Surong
    Yu, Shiwei
    Ullah, Zaka
    Liu, Lei
    Chen, Ledi
    Sun, Houliang
    Chen, Mingliang
    Liu, Liwei
    Li, Qi
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (07) : 3967 - 3976
  • [36] Free-standing polymer electrolyte for all-solid-state lithium batteries operated at room temperature
    Hsu, Shih-Ting
    Tran, Binh T.
    Subramani, Ramesh
    Nguyen, Hanh T. T.
    Rajamani, Arunkumar
    Lee, Ming-Yu
    Hou, Sheng-Shu
    Lee, Yuh-Lang
    Teng, Hsisheng
    JOURNAL OF POWER SOURCES, 2020, 449
  • [37] Electrochemical evaluation of different graphene/sulfur composite synthesis routes in all-solid-state lithium-sulfur batteries
    Kizilaslan, Abdulkadir
    Efe, Sukran
    Akbulut, Hatem
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2020, 24 (10) : 2279 - 2288
  • [38] Importance of mixing protocol for enhanced performance of composite cathodes in all-solid-state batteries using sulfide solid electrolyte
    Noh, Sungwoo
    Nichols, William T.
    Cho, Moonju
    Shin, Dongwook
    JOURNAL OF ELECTROCERAMICS, 2018, 40 (04) : 293 - 299
  • [39] Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries
    Zhang, Wenbo
    Weber, Dominik A.
    Weigand, Harald
    Arlt, Tobias
    Manke, Ingo
    Schroeder, Daniel
    Koerver, Raimund
    Leichtweiss, Thomas
    Hartmann, Pascal
    Zeier, Wolfgang G.
    Janek, Juergen
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (21) : 17835 - 17845
  • [40] Enabling high rate capability and stability all-solid-state batteries via cationic surfactant modification of composite electrolyte
    Dong, Pengyuan
    Deng, Qiang
    Zhang, Qimeng
    Chen, Changdong
    Yang, Chenghao
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 652 : 567 - 576