Performance Evaluation of Composite Electrolyte with GQD for All-Solid-State Lithium Batteries

被引:0
作者
Hwang, Sung Won [1 ]
Hong, Dae-Ki [1 ]
机构
[1] SangMyung Univ, Dept Syst Semicond Engn, Cheonan Si 31066, South Korea
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 74卷 / 01期
关键词
Solid-state; lithium batteries; composite electrolyte; quantum dot; graphene; LIQUID ELECTROLYTE; INTERPHASE; CONDUCTION; STABILITY; GERMANIUM; TRANSPORT; GRAPHENE; POLYMER;
D O I
10.32604/cmc.2023.028845
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use a stabilized lithium structure as cathode material for batteries could be a fundamental alternative in the development of next-generation energy storage devices. However, the lithium structure severely limits battery life causes safety concerns due to the growth of lithium (Li) dendrites during rapid charge/discharge cycles. Solid electrolytes, which are used in highdensity energy storage devices and avoid the instability of liquid electrolytes, can be a promising alternative for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, through the application of a low-dimensional graphene quantum dot (GQD) layer structure, stable operation characteristics were demonstrated based on Li+ ion conductivity and excellent electrochemical performance. Moreover, the device based on the modified graphene quantum dots (GQDs) in solid state exhibited retention properties of 95.3% for 100 cycles at 0.5 C and room temperature (RT). Transmission electron microscopy analysis was performed to elucidate the Li+ ion action mechanism in the modified GQD/electrolyte heterostructure. The low-dimensional structure of the GQD-based solid electrolyte has provided an important strategy for stably-scalable solid-state lithium battery applications at room temperature. It was demonstrated that lithiated graphene quantum dots (Li-GQDs) inhibit the growth of Li dendrites by regulating the modified Li+ ion flux during charge/discharge cycling at current densities of 2.2???5.5 mA cm, acting as a modified Li diffusion heterointerface. A full Li GQDbased device was fabricated to demonstrate the practicality of the modified Li structure using the Li???GQD hetero-interface. This study indicates that the low-dimensional carbon structure in Li???GQDs can be an effective approach for stabilization of solid-state Li matrix architecture.
引用
收藏
页码:55 / 66
页数:12
相关论文
共 38 条
[1]   An Energy Efficient Intelligent Method for Sensor Node Selection to Improve the Data Reliability in Internet of Things Networks [J].
Babu, Remesh K. R. ;
Preetha, K. G. ;
Saritha, S. ;
Rinil, K. R. .
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (09) :3151-3168
[2]   THE AC CONDUCTIVITY OF POLYCRYSTALLINE LISICON, LI2+2XZN1-XGEO4, AND A MODEL FOR INTERGRANULAR CONSTRICTION RESISTANCES [J].
BRUCE, PG ;
WEST, AR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1983, 130 (03) :662-669
[3]  
Busche MR, 2016, NAT CHEM, V8, P426, DOI [10.1038/NCHEM.2470, 10.1038/nchem.2470]
[4]   Toward high lithium conduction in solid polymer and polymer-ceramic batteries [J].
Commarieu, Basile ;
Paolella, Andrea ;
Daigle, Jean-Christophe ;
Zaghib, Karim .
CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 9 :56-63
[5]   Phase Stability and Transport Mechanisms in Antiperovskite Li3OCl and Li3OBr Superionic Conductors [J].
Emly, Alexandra ;
Kioupakis, Emmanouil ;
Van der Ven, Anton .
CHEMISTRY OF MATERIALS, 2013, 25 (23) :4663-4670
[6]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[7]   Stability of NASICON materials against water and CO2 uptake [J].
Guin, M. ;
Indris, S. ;
Kaus, M. ;
Ehrenberg, H. ;
Tietz, F. ;
Guillon, O. .
SOLID STATE IONICS, 2017, 302 :102-106
[8]   FROM GADGETS TO THE SMART GRID [J].
Gupta, Sujata .
NATURE, 2015, 526 (7575) :S90-S91
[9]  
Han XG, 2017, NAT MATER, V16, P572, DOI [10.1038/NMAT4821, 10.1038/nmat4821]
[10]   Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes [J].
Hartmann, Pascal ;
Leichtweiss, Thomas ;
Busche, Martin R. ;
Schneider, Meike ;
Reich, Marisa ;
Sann, Joachim ;
Adelhelm, Philipp ;
Janek, Juergen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (41) :21064-21074