A Modified inertial Halpern method for solving split monotone variational inclusion problems in Banach Spaces

被引:2
作者
Abass, H. A. [2 ,4 ]
Ugwunnadi, G. C. [1 ,3 ]
Narain, O. K. [2 ]
机构
[1] Univ Eswatini, Dept Math, Kwaluseni, South Africa
[2] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[3] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, POB 94, ZA-0204 Medunsa, South Africa
[4] DSI NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Monotone Variational inclusion problem; Bregman relatively nonexpansive mapping; Resolvent operators; Fixed point problem; Inertial method; FIXED-POINT PROBLEM; ITERATIVE ALGORITHM; EQUILIBRIUM PROBLEM; STRONG-CONVERGENCE; PROJECTION METHOD; OPERATORS; INEQUALITIES; CONVEX; SUM;
D O I
10.1007/s12215-022-00795-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose and study a modified inertial Halpern method for finding a common element of the set of solutions of split monotone variational inclusion problems which is also a fixed point problem of Bregman relatively nonexpansive mapping in p-uniformly convex Banach spaces which are also uniformly smooth. Moreover, our iterative method uses stepsize which does not require prior knowledge of the operator norm and we prove a strong convergence result under some mild conditions. We apply our result to solve split feasibility problems and display some numerical examples to show the performance of our result with the existing ones. The result present in this article unifies and extends several existing results in literature.
引用
收藏
页码:2287 / 2310
页数:24
相关论文
共 47 条
[1]   ON SPLIT COMMON FIXED POINT AND MONOTONE INCLUSION PROBLEMS IN REFLEXIVE BANACH SPACES [J].
Abass, H. A. ;
Mebawondu, A. A. ;
Izuchukwu, C. ;
Narain, O. K. .
FIXED POINT THEORY, 2022, 23 (01) :3-6
[2]   STRONG CONVERGENCE OF AN INERTIAL FORWARD-BACKWARD SPLITTING METHOD FOR ACCRETIVE OPERATORS IN REAL BANACH SPACE [J].
Abass, H. A. ;
Izuchukwu, C. ;
Mewomo, O. T. ;
Dong, Q. L. .
FIXED POINT THEORY, 2020, 21 (02) :397-412
[3]   AN INERTIAL FORWARD-BACKWARD SPLITTING METHOD FOR APPROXIMATING SOLUTIONS OF CERTAIN OPTIMIZATION PROBLEMS [J].
Abass, H. A. ;
Aremu, K. O. ;
Jolaoso, L. O. ;
Mewomo, O. T. .
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2020,
[4]  
Abass HA, 2018, U POLITEH BUCH SER A, V80, P175
[5]   An iterative algorithm for generalized nonlinear variational inclusions [J].
Ahmad, R ;
Ansari, QH .
APPLIED MATHEMATICS LETTERS, 2000, 13 (05) :23-26
[6]   Generalized variational inclusions and generalized resolvent equations in Banach spaces [J].
Ahmad, R ;
Ansari, QH ;
Irfan, SS .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (11-12) :1825-1835
[7]   An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping [J].
Alvarez, F ;
Attouch, H .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :3-11
[8]  
Bregman LM., 1967, USSR COMP MATH MATH, V7, P200, DOI DOI 10.1016/0041-5553(67)90040-7
[9]   A proximal-projection method for finding zeros of set-valued operators [J].
Butnariu, Dan ;
Kassay, Gabor .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) :2096-2136