A Modified inertial Halpern method for solving split monotone variational inclusion problems in Banach Spaces

被引:2
|
作者
Abass, H. A. [2 ,4 ]
Ugwunnadi, G. C. [1 ,3 ]
Narain, O. K. [2 ]
机构
[1] Univ Eswatini, Dept Math, Kwaluseni, South Africa
[2] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[3] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, POB 94, ZA-0204 Medunsa, South Africa
[4] DSI NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Monotone Variational inclusion problem; Bregman relatively nonexpansive mapping; Resolvent operators; Fixed point problem; Inertial method; FIXED-POINT PROBLEM; ITERATIVE ALGORITHM; EQUILIBRIUM PROBLEM; STRONG-CONVERGENCE; PROJECTION METHOD; OPERATORS; INEQUALITIES; CONVEX; SUM;
D O I
10.1007/s12215-022-00795-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose and study a modified inertial Halpern method for finding a common element of the set of solutions of split monotone variational inclusion problems which is also a fixed point problem of Bregman relatively nonexpansive mapping in p-uniformly convex Banach spaces which are also uniformly smooth. Moreover, our iterative method uses stepsize which does not require prior knowledge of the operator norm and we prove a strong convergence result under some mild conditions. We apply our result to solve split feasibility problems and display some numerical examples to show the performance of our result with the existing ones. The result present in this article unifies and extends several existing results in literature.
引用
收藏
页码:2287 / 2310
页数:24
相关论文
共 50 条
  • [1] A Modified inertial Halpern method for solving split monotone variational inclusion problems in Banach Spaces
    H. A. Abass
    G. C. Ugwunnadi
    O. K. Narain
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 2287 - 2310
  • [2] AN INERTIAL ITERATIVE METHOD FOR SOLVING SPLIT MONOTONE INCLUSION PROBLEMS IN HILBERT SPACES
    Mebawondu, Akindele Adebayo
    Sunday, Akunna Sunsan
    Narain, Ojen Kumar
    Maharaj, Adhir
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024,
  • [3] A new modified Halpern-type splitting algorithm for solving monotone inclusion problems in reflexive Banach spaces
    Chen, Lulu
    Cai, Gang
    Cholamjiak, Prasit
    Inkrong, Papatsara
    JOURNAL OF GLOBAL OPTIMIZATION, 2025, 91 (03) : 559 - 585
  • [4] Inertial approximation method for split variational inclusion problem in Banach spaces
    Oyewole, Olawale K.
    Izuchukwu, Chinedu
    Okeke, Chibueze C.
    Mewomo, Oluwatosin T.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2020, 11 (02): : 285 - 304
  • [5] An Iterative Method for Solving Split Monotone Variational Inclusion Problems and Finite Family of Variational Inequality Problems in Hilbert Spaces
    Sriprad, Wanna
    Srisawat, Somnuk
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2021, 2021
  • [6] Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces
    A. Taiwo
    T. O. Alakoya
    O. T. Mewomo
    Numerical Algorithms, 2021, 86 : 1359 - 1389
  • [7] Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces
    Taiwo, A.
    Alakoya, T. O.
    Mewomo, O. T.
    NUMERICAL ALGORITHMS, 2021, 86 (04) : 1359 - 1389
  • [8] Inertial Bilevel Variational Monotone Inclusion Problem in Banach Spaces
    Ezugorie, Ikechukwu Godwin
    Ugwunnadi, Godwin Chidi
    Ofoedu, Eric Uwadiegwu
    Aphane, Maggie
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22
  • [9] Shrinking approximation method for solution of split monotone variational inclusion and fixed point problems in Banach spaces
    Akutsaha, F.
    Narain, O. K.
    Abass, H. A.
    Mebawondu, A. A.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 825 - 842
  • [10] A modified contraction method for solving certain class of split monotone variational inclusion problems with application
    C. Izuchukwu
    J. N. Ezeora
    J. Martinez-Moreno
    Computational and Applied Mathematics, 2020, 39