MEAN-VARIANCE PORTFOLIO SELECTION WITH RANDOM INVESTMENT HORIZON

被引:2
作者
Liu, Jingzhen [1 ]
Yiu, Ka-Fai Cedric [2 ]
Li, Xun [2 ]
Siu, Tak Kuen [3 ]
Teo, Kok Lay [4 ]
机构
[1] Cent Univ Finance & Econ, China Inst Actuarial Sci, Beijing 100081, Peoples R China
[2] Hong Kong Polytechn Univ, Hunghom, Dept Appl Math, Hong Kong, Peoples R China
[3] Macquarie Univ, Macquarie Business Sch, Dept Actuarial Studies & Business Analyt, Sydney, NSW 2109, Australia
[4] Sunway Univ, Sch Math Sci, Danul Ehsan, Selangor, Malaysia
基金
中国国家自然科学基金;
关键词
Mean variance; random time horizon; HJB equations; efficient frontier;
D O I
10.3934/jimo.2022147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper studies a continuous-time securities market where an agent, having a random investment horizon and a targeted terminal mean return, seeks to minimize the variance of a portfolio's return. Two situations are discussed, namely a deterministic time-varying density process and a stochastic density process. In contrast to [18], the variance of an investment portfolio is no longer minimal when all assets are invested in a risk-free security. Furthermore, the random investment horizon has a material effect on the efficient frontier. This provides some insights into the classical mutual fund theorem.
引用
收藏
页码:4726 / 4739
页数:14
相关论文
共 20 条
  • [1] [Anonymous], 2010, Dynamics of Continuous, Discrete and Impulsive Systems, Series B
  • [2] [Anonymous], 1990, Continuous-Time Finance
  • [3] Optimal investment decisions when time-horizon is uncertain
    Blanchet-Scalliet, Christophette
    El Karoui, Nicole
    Jeanblanc, Monique
    Martellini, Lionel
    [J]. JOURNAL OF MATHEMATICAL ECONOMICS, 2008, 44 (11) : 1100 - 1113
  • [4] Wealth-path dependent utility maximization in incomplete markets
    Bouchard, B
    Pham, H
    [J]. FINANCE AND STOCHASTICS, 2004, 8 (04) : 579 - 603
  • [5] Delong L., 2006, ANN UNIVERSITATIS MA, P1
  • [6] Elliott R. J., 1994, Hidden Markov models
  • [7] ROBUST MULTI-PERIOD AND MULTI-OBJECTIVE PORTFOLIO SELECTION
    Jiang, Lin
    Wang, Song
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (02) : 695 - 709
  • [8] Optimal dynamic portfolio selection: Multiperiod mean-variance formulation
    Li, D
    Ng, WL
    [J]. MATHEMATICAL FINANCE, 2000, 10 (03) : 387 - 406
  • [9] Dynamic mean-variance portfolio selection with no-shorting constraints
    Li, X
    Zhou, XY
    Lim, AEB
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (05) : 1540 - 1555
  • [10] Continuous-time mean-variance efficiencythe 80% rule
    Li, Xun
    Zhou, Xun Yu
    [J]. ANNALS OF APPLIED PROBABILITY, 2006, 16 (04) : 1751 - 1763