MEAN-VARIANCE PORTFOLIO SELECTION WITH RANDOM INVESTMENT HORIZON

被引:2
作者
Liu, Jingzhen [1 ]
Yiu, Ka-Fai Cedric [2 ]
Li, Xun [2 ]
Siu, Tak Kuen [3 ]
Teo, Kok Lay [4 ]
机构
[1] Cent Univ Finance & Econ, China Inst Actuarial Sci, Beijing 100081, Peoples R China
[2] Hong Kong Polytechn Univ, Hunghom, Dept Appl Math, Hong Kong, Peoples R China
[3] Macquarie Univ, Macquarie Business Sch, Dept Actuarial Studies & Business Analyt, Sydney, NSW 2109, Australia
[4] Sunway Univ, Sch Math Sci, Danul Ehsan, Selangor, Malaysia
基金
中国国家自然科学基金;
关键词
Mean variance; random time horizon; HJB equations; efficient frontier;
D O I
10.3934/jimo.2022147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper studies a continuous-time securities market where an agent, having a random investment horizon and a targeted terminal mean return, seeks to minimize the variance of a portfolio's return. Two situations are discussed, namely a deterministic time-varying density process and a stochastic density process. In contrast to [18], the variance of an investment portfolio is no longer minimal when all assets are invested in a risk-free security. Furthermore, the random investment horizon has a material effect on the efficient frontier. This provides some insights into the classical mutual fund theorem.
引用
收藏
页码:4726 / 4739
页数:14
相关论文
共 20 条
[1]   Optimal investment decisions when time-horizon is uncertain [J].
Blanchet-Scalliet, Christophette ;
El Karoui, Nicole ;
Jeanblanc, Monique ;
Martellini, Lionel .
JOURNAL OF MATHEMATICAL ECONOMICS, 2008, 44 (11) :1100-1113
[2]   Wealth-path dependent utility maximization in incomplete markets [J].
Bouchard, B ;
Pham, H .
FINANCE AND STOCHASTICS, 2004, 8 (04) :579-603
[3]  
Delong L., 2006, ANN UNIVERSITATIS MA, P1
[4]  
Elliott RJ, 1994, HIDDEN MARKOV MODELS
[5]   ROBUST MULTI-PERIOD AND MULTI-OBJECTIVE PORTFOLIO SELECTION [J].
Jiang, Lin ;
Wang, Song .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (02) :695-709
[6]   Optimal dynamic portfolio selection: Multiperiod mean-variance formulation [J].
Li, D ;
Ng, WL .
MATHEMATICAL FINANCE, 2000, 10 (03) :387-406
[7]   Dynamic mean-variance portfolio selection with no-shorting constraints [J].
Li, X ;
Zhou, XY ;
Lim, AEB .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (05) :1540-1555
[8]   Continuous-time mean-variance efficiencythe 80% rule [J].
Li, Xun ;
Zhou, Xun Yu .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (04) :1751-1763
[9]  
Li Z.F., 2010, Dynamics of Continuous, Discrete and Impulsive Systems, Series B, V17, P131
[10]   MULTI-PERIOD PORTFOLIO OPTIMIZATION IN A DEFINED CONTRIBUTION PENSION PLAN DURING THE DECUMULATION PHASE [J].
Lin, Chuangwei ;
Zeng, Li ;
Wu, Huiling .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2019, 15 (01) :401-427