On finite groups with weakly σ-normal subgroups

被引:0
作者
Tang, Juping [1 ]
Ji, Jiuzhou [2 ]
Yang, Nanying [2 ]
机构
[1] Wuxi Inst Technol, Dept Fundamental Courses, Wuxi 214024, Peoples R China
[2] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
关键词
Finite groups; sigma-nilpotent group; sigma-semipermutable subgroup; sigma-permutably embedded subgroup; weakly sigma-normal subgroup; PERMUTABLE SUBGROUPS;
D O I
10.1142/S0219498825502172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group and sigma={sigma(i)|i is an element of I} some partition of the set of all primes. A subgroup H of G is said to be weakly sigma-normal in G if there exists a sigma-subnormal subgroup T of G such that G = HT and H boolean AND T <= H-*<= H, where H-* is either sigma-permutably embedded or sigma-semipermutable in G. In this paper, we investigate the influence of weakly sigma-normal subgroups on the structure of finite groups.
引用
收藏
页数:14
相关论文
共 26 条
[1]   On finite groups with σ-subnormal Schmidt subgroups [J].
Al-Sharo, Khaled A. ;
Skiba, Alexander N. .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) :4158-4165
[2]   Sufficient conditions for supersolubility of finite groups [J].
Ballester-Bolinches, A ;
Pedraza-Aguilera, MC .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 127 (02) :113-118
[3]   SOME CONDITIONS UNDER WHICH A FINITE GROUP BELONGS TO A BAER-LOCAL FORMATION [J].
Chen, Xiaoyu ;
Guo, Wenbin ;
Skiba, Alexander N. .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (10) :4188-4203
[4]  
Chen Z.M., 1987, J SW NORMAL U NAT SC, V12, P1, DOI [10.13718/j.cnki.xsxb.1987.01.001, DOI 10.13718/J.CNKI.XSXB.1987.01.001]
[5]  
DOERK K., 1992, FINITE SOLUBLE GROUP, DOI DOI 10.1515/9783110870138
[6]  
Guo W., 2015, STRUCTURE THEORY CAN
[7]  
GUO W, 2000, THEORY CLASSES GROUP
[8]   On σ-semipermutable Subgroups of Finite Groups [J].
Guo, Wen Bin ;
Skiba, Alexander N. .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (09) :1379-1390
[9]  
Guo WB, 2021, SE ASIAN B MATH, V45, P813
[10]   On σ-supersoluble groups and one generalization of CLT-groups [J].
Guo, Wenbin ;
Chi, Zhang ;
Skiba, Alexander N. .
JOURNAL OF ALGEBRA, 2018, 512 :92-108