Wandering principal optical axes in van der Waals triclinic materials

被引:8
作者
Ermolaev, Georgy A. [1 ]
Voronin, Kirill V. [2 ]
Toksumakov, Adilet N. [3 ]
Grudinin, Dmitriy V. [1 ]
Fradkin, Ilia M. [1 ]
Mazitov, Arslan [4 ]
Slavich, Aleksandr S. [3 ]
Tatmyshevskiy, Mikhail K. [3 ]
Yakubovsky, Dmitry I. [3 ]
Solovey, Valentin R. [1 ]
Kirtaev, Roman V. [1 ]
Novikov, Sergey M. [3 ]
Zhukova, Elena S. [3 ]
Kruglov, Ivan [1 ]
Vyshnevyy, Andrey A. [1 ]
Baranov, Denis G. [3 ]
Ghazaryan, Davit A. [3 ,5 ]
Arsenin, Aleksey V. [1 ,5 ]
Martin-Moreno, Luis [6 ,7 ]
Volkov, Valentyn S. [1 ,5 ]
Novoselov, Kostya S. [8 ,9 ,10 ]
机构
[1] XPANCEO, Emerging Technol Res Ctr, Dubai Investment Pk First, Dubai, U Arab Emirates
[2] Donostia Int Phys Ctr DIPC, Donostia San Sebastian 20018, Spain
[3] Moscow Ctr Adv Studies, Kulakova Str 20, Moscow 123592, Russia
[4] Ecole Polytech Fed Lausanne, Inst Mat, CH-1015 Lausanne, Switzerland
[5] Yerevan State Univ, Lab Adv Funct Mat, Yerevan 0025, Armenia
[6] Univ Zaragoza, Inst Nanociencia & Mat Aragon INMA, CSIC, Zaragoza 50009, Spain
[7] Univ Zaragoza, Dept Fis Mat Condensada, Zaragoza 50009, Spain
[8] Univ Manchester, Natl Graphene Inst NGI, Manchester M13 9PL, England
[9] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 0309, Singapore
[10] Natl Univ Singapore, Inst Funct Intelligent Mat, Singapore 117544, Singapore
关键词
HYPERBOLIC SURFACE-POLARITONS; ATOMICALLY THIN; NEGATIVE REFRACTION; PHOTONIC CRYSTALS; SYMMETRY; RES2; ANISOTROPY; EXCITONS;
D O I
10.1038/s41467-024-45266-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nature is abundant in material platforms with anisotropic permittivities arising from symmetry reduction that feature a variety of extraordinary optical effects. Principal optical axes are essential characteristics for these effects that define light-matter interaction. Their orientation - an orthogonal Cartesian basis that diagonalizes the permittivity tensor, is often assumed stationary. Here, we show that the low-symmetry triclinic crystalline structure of van der Waals rhenium disulfide and rhenium diselenide is characterized by wandering principal optical axes in the space-wavelength domain with above pi/2 degree of rotation for in-plane components. In turn, this leads to wavelength-switchable propagation directions of their waveguide modes. The physical origin of wandering principal optical axes is explained using a multi-exciton phenomenological model and ab initio calculations. We envision that the wandering principal optical axes of the investigated low-symmetry triclinic van der Waals crystals offer a platform for unexplored anisotropic phenomena and nanophotonic applications. Principal optical axes define light-matter interactions in crystals and they are usually assumed to be stationary. Here, the authors report the observation of wavelength-dependent principal optical axes in ternary van der Waals crystals (ReS2 and ReSe2), leading to wavelength-switchable propagation directions of their waveguide modes.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures
    Thygesen, Kristian Sommer
    2D MATERIALS, 2017, 4 (02):
  • [22] Ultrafast microscopy captures the dynamics of bound excitons in twisted bilayer van der Waals materials
    Patel, Hiral
    Vogt, Kyle T.
    Huang, Lujie
    Park, Jiwoong
    Graham, Matt W.
    ULTRAFAST BANDGAP PHOTONICS II, 2017, 10193
  • [23] Near-field optics on flatland: from noble metals to van der Waals materials
    Duan, Jiahua
    Li, Yafeng
    Zhou, Yixi
    Cheng, Yuan
    Chen, Jianing
    ADVANCES IN PHYSICS-X, 2019, 4 (01):
  • [24] Van der Waals magnetic materials for current-induced control toward spintronic applications
    Ryu, Jeongchun
    Kajale, Shivam Nitin
    Sarkar, Deblina
    MRS COMMUNICATIONS, 2024, 14 (06) : 1113 - 1126
  • [25] Optical propagation of exciton polaritons in ultrathin van der Waals microcrystals down to few monolayers
    Ljaz, Talha
    Bian, Qi
    Cao, Yan
    Ding, Haoxuan
    Chen, Xiaorui
    Lu, Huan
    Yang, Shu
    Xing, Xueting
    Fang, Simin
    Liu, Mengyuan
    Zhang, Xin
    Gao, Jianzhi
    Pan, Minghu
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2024, 37 (01) : 35 - 42
  • [26] Hyperspectral Nanoimaging of van der Waals Polaritonic Crystals
    Alfaro-Mozaz, F. J.
    Rodrigo, S. G.
    Velez, S.
    Dolado, I
    Govyadinov, A.
    Alonso-Gonzalez, P.
    Casanova, F.
    Hueso, L. E.
    Martin-Moreno, L.
    Hillenbrand, R.
    Nikitin, A. Y.
    NANO LETTERS, 2021, 21 (17) : 7109 - 7115
  • [27] Multitude of exceptional points in van der Waals magnets
    Li, Xin
    Deng, Kuangyin
    Flebus, Benedetta
    PHYSICAL REVIEW B, 2022, 106 (21)
  • [28] van der Waals-stabilized Rydberg aggregates
    Zoubi, H.
    Eisfeld, A.
    Wuester, S.
    PHYSICAL REVIEW A, 2014, 89 (05):
  • [29] Spin dynamics in van der Waals magnetic systems
    Tang, Chunli
    Alahmed, Laith
    Mahdi, Muntasir
    Xiong, Yuzan
    Inman, Jerad
    McLaughlin, Nathan J.
    Zollitsch, Christoph
    Kim, Tae Hee
    Du, Chunhui Rita
    Kurebayashi, Hidekazu
    Santos, Elton J. G.
    Zhang, Wei
    Li, Peng
    Jin, Wencan
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2023, 1032 : 1 - 36
  • [30] Multilayered Atomic Relaxation in van der Waals Heterostructures
    Halbertal, Dorri
    Klebl, Lennart
    Hsieh, Valerie
    Cook, Jacob
    Carr, Stephen
    Bian, Guang
    Dean, Cory R.
    Kennes, Dante M.
    Basov, D. N.
    PHYSICAL REVIEW X, 2023, 13 (01):