Wandering principal optical axes in van der Waals triclinic materials

被引:8
作者
Ermolaev, Georgy A. [1 ]
Voronin, Kirill V. [2 ]
Toksumakov, Adilet N. [3 ]
Grudinin, Dmitriy V. [1 ]
Fradkin, Ilia M. [1 ]
Mazitov, Arslan [4 ]
Slavich, Aleksandr S. [3 ]
Tatmyshevskiy, Mikhail K. [3 ]
Yakubovsky, Dmitry I. [3 ]
Solovey, Valentin R. [1 ]
Kirtaev, Roman V. [1 ]
Novikov, Sergey M. [3 ]
Zhukova, Elena S. [3 ]
Kruglov, Ivan [1 ]
Vyshnevyy, Andrey A. [1 ]
Baranov, Denis G. [3 ]
Ghazaryan, Davit A. [3 ,5 ]
Arsenin, Aleksey V. [1 ,5 ]
Martin-Moreno, Luis [6 ,7 ]
Volkov, Valentyn S. [1 ,5 ]
Novoselov, Kostya S. [8 ,9 ,10 ]
机构
[1] XPANCEO, Emerging Technol Res Ctr, Dubai Investment Pk First, Dubai, U Arab Emirates
[2] Donostia Int Phys Ctr DIPC, Donostia San Sebastian 20018, Spain
[3] Moscow Ctr Adv Studies, Kulakova Str 20, Moscow 123592, Russia
[4] Ecole Polytech Fed Lausanne, Inst Mat, CH-1015 Lausanne, Switzerland
[5] Yerevan State Univ, Lab Adv Funct Mat, Yerevan 0025, Armenia
[6] Univ Zaragoza, Inst Nanociencia & Mat Aragon INMA, CSIC, Zaragoza 50009, Spain
[7] Univ Zaragoza, Dept Fis Mat Condensada, Zaragoza 50009, Spain
[8] Univ Manchester, Natl Graphene Inst NGI, Manchester M13 9PL, England
[9] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 0309, Singapore
[10] Natl Univ Singapore, Inst Funct Intelligent Mat, Singapore 117544, Singapore
关键词
HYPERBOLIC SURFACE-POLARITONS; ATOMICALLY THIN; NEGATIVE REFRACTION; PHOTONIC CRYSTALS; SYMMETRY; RES2; ANISOTROPY; EXCITONS;
D O I
10.1038/s41467-024-45266-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nature is abundant in material platforms with anisotropic permittivities arising from symmetry reduction that feature a variety of extraordinary optical effects. Principal optical axes are essential characteristics for these effects that define light-matter interaction. Their orientation - an orthogonal Cartesian basis that diagonalizes the permittivity tensor, is often assumed stationary. Here, we show that the low-symmetry triclinic crystalline structure of van der Waals rhenium disulfide and rhenium diselenide is characterized by wandering principal optical axes in the space-wavelength domain with above pi/2 degree of rotation for in-plane components. In turn, this leads to wavelength-switchable propagation directions of their waveguide modes. The physical origin of wandering principal optical axes is explained using a multi-exciton phenomenological model and ab initio calculations. We envision that the wandering principal optical axes of the investigated low-symmetry triclinic van der Waals crystals offer a platform for unexplored anisotropic phenomena and nanophotonic applications. Principal optical axes define light-matter interactions in crystals and they are usually assumed to be stationary. Here, the authors report the observation of wavelength-dependent principal optical axes in ternary van der Waals crystals (ReS2 and ReSe2), leading to wavelength-switchable propagation directions of their waveguide modes.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Tunable Optical Forces Enabled by Bilayer van der Waals Materials
    Cai, Ziqiang
    Jin, Renchao
    Xu, Yihao
    Liu, Yongmin
    ADVANCED OPTICAL MATERIALS, 2024, 12 (01):
  • [2] Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials
    Li, P.
    Dolado, I.
    Alfaro-Mozaz, F. J.
    Nikitin, A. Yu.
    Casanova, F.
    Hueso, L. E.
    Velez, S.
    Hillenbrand, R.
    NANO LETTERS, 2017, 17 (01) : 228 - 235
  • [3] Anisotropic polaritons in van der Waals materials
    Ma, Weiliang
    Shabbir, Babar
    Ou, Qingdong
    Dong, Yemin
    Chen, Huanyang
    Li, Peining
    Zhang, Xinliang
    Lu, Yuerui
    Bao, Qiaoliang
    INFOMAT, 2020, 2 (05) : 777 - 790
  • [4] Single-photon emitters in van der Waals materials
    Qiao, Jiandong
    Mei, Fuhong
    Ye, Yu
    CHINESE OPTICS LETTERS, 2019, 17 (02)
  • [5] Manipulating polaritons at the extreme scale in van der Waals materials
    Wu, Yingjie
    Duan, Jiahua
    Ma, Weiliang
    Ou, Qingdong
    Li, Peining
    Alonso-Gonzalez, Pablo
    Caldwell, Joshua D.
    Bao, Qiaoliang
    NATURE REVIEWS PHYSICS, 2022, 4 (09) : 578 - 594
  • [6] Raman and Photoluminescence Studies of Quasiparticles in van der Waals Materials
    AL-Makeen, Mansour M.
    Biack, Mario H.
    Guo, Xiao
    Xie, Haipeng
    Huang, Han
    NANOMATERIALS, 2025, 15 (02)
  • [7] Phonon Polaritons and Hyperbolic Response in van der Waals Materials
    Hu, Guangwei
    Shen, Jialiang
    Qiu, Cheng-Wei
    Alu, Andrea
    Dai, Siyuan
    ADVANCED OPTICAL MATERIALS, 2020, 8 (05)
  • [8] Layer contribution to optical signals of van der Waals heterostructures
    Wang, Su-Yun
    Chen, Guo-Xing
    Guo, Qin-Qin
    Huang, Kai-Xuan
    Zhang, Xi-Lin
    Yan, Xiao-Qing
    Liu, Zhi-Bo
    Tian, Jian-Guo
    NANOSCALE ADVANCES, 2021, 3 (11): : 3114 - 3123
  • [9] Strong light-matter coupling in van der Waals materials
    Luo, Yuan
    Zhao, Jiaxin
    Fieramosca, Antonio
    Guo, Quanbing
    Kang, Haifeng
    Liu, Xiaoze
    Liew, Timothy C. H.
    Sanvitto, Daniele
    An, Zhiyuan
    Ghosh, Sanjib
    Wang, Ziyu
    Xu, Hongxing
    Xiong, Qihua
    LIGHT-SCIENCE & APPLICATIONS, 2024, 13 (01)
  • [10] Negative Reflection and Negative Refraction in Biaxial van der Waals Materials
    Zhang, Tan
    Zheng, Chunqi
    Chen, Zhi Ning
    Qiu, Cheng-Wei
    NANO LETTERS, 2022, 22 (13) : 5607 - 5614