Multi-omic analysis of human kidney tissue identified medulla-specific gene expression patterns

被引:6
|
作者
Haug, Stefan [1 ]
Muthusamy, Selvaraj [2 ]
Li, Yong [1 ]
Stewart, Galen [3 ]
Li, Xianwu [3 ]
Treppner, Martin [4 ,5 ]
Koettgen, Anna [1 ,7 ]
Akilesh, Shreeram [3 ,6 ]
机构
[1] Univ Freiburg, Inst Genet Epidemiol, Med Ctr, Freiburg, Germany
[2] Virginia Commonwealth Univ, Dept Pathol, Richmond, VA USA
[3] Univ Washington, Dept Lab Med & Pathol, Seattle, WA USA
[4] Univ Freiburg, Inst Med Biometry & Stat, Fac Med, Freiburg, Germany
[5] Univ Freiburg, Med Ctr, Freiburg, Germany
[6] Univ Washington, Dept Lab Med & Pathol, Box 356100,1959 NE Pacific St, Seattle, WA 98195 USA
[7] Univ Freiburg, Inst Genet Epidemiol, Med Ctr, Hugstetter Str 49, D-79106 Freiburg, Germany
关键词
epigenetics; gene expression; kidney disease; kidney medulla; spatial transcriptomics; transcriptional regulation; R/BIOCONDUCTOR PACKAGE; GENOME; DISEASE; LOCALIZATION; PRINCIPLES; DISTANCE; PROGRAM; DOMAINS; CELLS; ROLES;
D O I
10.1016/j.kint.2023.10.024
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
The kidney medulla is a specialized region with important homeostatic functions. It has been implicated in genetic and developmental disorders along with ischemic and drug-induced injuries. Despite its role in kidney function and disease, the medulla's baseline gene expression and epigenomic signatures have not been well described in the adult human kidney. Here we generated and analyzed gene expression (RNA-seq), chromatin accessibility (ATAC-seq), chromatin conformation (Hi-C) and spatial transcriptomic data from the adult human kidney cortex and medulla. Tissue samples were obtained from macroscopically dissected cortex and medulla of tumor-adjacent normal material in nephrectomy specimens from five male patients. We used these carefully annotated specimens to reassign incorrectly labeled samples in the larger public Genotype-Tissue Expression (GTEx) Project, and to extract meaningful medullary gene expression signatures. Using integrated analysis of gene expression, chromatin accessibility and conformation profiles, we found insights into medulla development and function and then validated this by spatial transcriptomics and immunohistochemistry. Thus, our datasets provide a valuable resource for functional annotation of variants from genome-wide association studies and are freely accessible through an epigenome browser portal.
引用
收藏
页码:293 / 311
页数:19
相关论文
共 50 条
  • [11] Signal metrics analysis of oscillatory patterns in bacterial multi-omic networks
    Bardozzo, Francesco
    Lio, Pietro
    Tagliaferri, Roberto
    BIOINFORMATICS, 2021, 37 (10) : 1411 - 1419
  • [12] gEAR: Gene Expression Analysis Resource portal for community-driven, multi-omic data exploration
    Joshua Orvis
    Brian Gottfried
    Jayaram Kancherla
    Ricky S. Adkins
    Yang Song
    Amiel A. Dror
    Dustin Olley
    Kevin Rose
    Elena Chrysostomou
    Michael C. Kelly
    Beatrice Milon
    Maggie S. Matern
    Hela Azaiez
    Brian Herb
    Carlo Colantuoni
    Robert L. Carter
    Seth A. Ament
    Matthew W. Kelley
    Owen White
    Hector Corrada Bravo
    Anup Mahurkar
    Ronna Hertzano
    Nature Methods, 2021, 18 : 843 - 844
  • [13] Identification of epipin expression in progression of chronic kidney disease-a multi-omic approach
    Kademani, Sangeetha
    Nelaturi, Prabhudas
    Sagar, K. Sathya
    Sambandam, Ravikumar
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2024, 39
  • [14] gEAR: Gene Expression Analysis Resource portal for community-driven, multi-omic data exploration
    Orvis, Joshua
    Gottfried, Brian
    Kancherla, Jayaram
    Adkins, Ricky S.
    Song, Yang
    Dror, Amiel A.
    Olley, Dustin
    Rose, Kevin
    Chrysostomou, Elena
    Kelly, Michael C.
    Milon, Beatrice
    Matern, Maggie S.
    Azaiez, Hela
    Herb, Brian
    Colantuoni, Carlo
    Carter, Robert L.
    Ament, Seth A.
    Kelley, Matthew W.
    White, Owen
    Bravo, Hector Corrada
    Mahurkar, Anup
    Hertzano, Ronna
    NATURE METHODS, 2021, 18 (08) : 843 - 844
  • [15] Optimised human stool sample collection for multi-omic microbiota analysis
    Gemmell, Matthew R.
    Jayawardana, Thisun
    Koentgen, Sabrina
    Brooks, Ella
    Kennedy, Nicholas
    Berry, Susan
    Lees, Charlie
    Hold, Georgina L.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [16] Principled multi-omic analysis reveals gene regulatory mechanisms of phenotype variation
    Hanson, Casey
    Cairns, Junmei
    Wang, Liewei
    Sinha, Saurabh
    GENOME RESEARCH, 2018, 28 (08) : 1207 - 1216
  • [17] Multi-Omic Analysis Reveals Genetic Determinants and Therapeutic Targets of Chronic Kidney Disease and Kidney Function
    Lu, Yao-Qi
    Wang, Yirong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (11)
  • [18] A "Multi-Omic" Analysis of Proteome and Metabolome for Acute Rejection and PVAN in Kidney Transplantation.
    Sigdel, T.
    Yang, J.
    Sarwal, M.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2018, 18 : 831 - 831
  • [19] Article Multi-omic analysis in injured humans: Patterns align with outcomes and treatment responses
    Wu, Junru
    Vodovotz, Yoram
    Abdelhamid, Sultan
    Guyette, Francis X.
    Yaffe, Michael B.
    Gruen, Danielle S.
    Cyr, Anthony
    Okonkwo, David O.
    Kar, Upendra K.
    Krishnamoorthi, Neha
    Voinchet, Robert G.
    Billiar, Isabel M.
    Yazer, Mark H.
    Namas, Rami A.
    Daley, Brian J.
    Miller, Richard S.
    Harbrecht, Brian G.
    Claridge, Jeffrey A.
    Phelan, Herbert A.
    Zuckerbraun, Brian S.
    Johansson, Par, I
    Stensballe, Jakob
    Morrissey, James H.
    Tracy, Russell P.
    Wisniewski, Stephen R.
    Neal, Matthew D.
    Sperry, Jason L.
    Billiar, Timothy R.
    CELL REPORTS MEDICINE, 2021, 2 (12)
  • [20] Integrated multi-omic analysis of human retinoblastoma identifies novel regulatory networks
    Sureshbabu, V.
    Mallipatna, A.
    Guha, N.
    Sa, D.
    Lateef, S.
    Gundimeda, S.
    Padmanabhan, A.
    Shetty, R.
    Ghosh, A.
    ACTA OPHTHALMOLOGICA, 2015, 93