On a blow-up criterion for solution of 3D fractional Navier-Stokes-Coriolis equations in Lei-Lin-Gevrey spaces

被引:0
|
作者
Sun, Xiaochun [1 ]
Xu, Gaoting [1 ]
Wu, Yulian [1 ]
机构
[1] Northwest Normal Univ, Sch Math & Stat, Lanzhou 730070, Peoples R China
来源
OPEN MATHEMATICS | 2023年 / 21卷 / 01期
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; Coriolis force; existence; blow-up criterion; Lei-Lin-Gevrey spaces; LONG-TIME DECAY; REGULARITY;
D O I
10.1515/math-2023-0170
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we researched the existence of the solution to the fractional Navier-Stokes equations with the Coriolis force under initial data, which belong to the Lei-Lin-Gevrey spaces. Moreover, we showed a blow-up criterion, i.e., when the maximal time of existence T* is finite, we proved that the norm of this same solution, in a specific Lei-Lin-Gevrey space, goes to infinity, as time tends to the maximal time of its existence.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A Blow-up Criterion for the Modified Navier-Stokes-Fourier Equations
    Fan, Jishan
    Ozawa, Tohru
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (02)
  • [22] A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations
    Kim, H
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 37 (05) : 1417 - 1434
  • [23] NEW BLOW-UP CRITERIA FOR 3D CHEMOTAXIS-NAVIER-STOKES EQUATIONS
    Wang, Haoyu
    Qu, Yue
    Qian, Chenyin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (01): : 361 - 377
  • [24] Navier-Stokes equations: local existence, uniqueness and blow-up of solutions in Sobolev-Gevrey spaces
    Melo, Wilberclay G.
    Rocha, Nata Firmino
    Barbosa, Ezequiel
    APPLICABLE ANALYSIS, 2021, 100 (09) : 1905 - 1924
  • [25] Algebraic decay rates for 3D Navier-Stokes and Navier-Stokes-Coriolis equations in H•1/2
    Ikeda, Masahiro
    Kosloff, Leonardo
    Niche, Cesar J.
    Planas, Gabriela
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (03)
  • [26] On the blow-up criterion of 3D Navier-Stokes equation in H?5/2
    Benameur, Jamel
    Orf, Hajer
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6972 - 6986
  • [27] On the Blow-up Criterion of 3D-NSE in Sobolev-Gevrey Spaces
    Benameur, Jamel
    Jlali, Lotfi
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2016, 18 (04) : 805 - 822
  • [28] Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
    Jlali, Lotfi
    OPEN MATHEMATICS, 2021, 19 (01): : 898 - 908
  • [29] A Note on Blow-up Criterion of Strong Solutions for the 3D Inhomogeneous Incompressible Navier-Stokes Equations with Vacuum
    Zhuan Ye
    Xiaojing Xu
    Mathematical Physics, Analysis and Geometry, 2015, 18
  • [30] A Note on Blow-up Criterion of Strong Solutions for the 3D Inhomogeneous Incompressible Navier-Stokes Equations with Vacuum
    Ye, Zhuan
    Xu, Xiaojing
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2015, 18 (01)