On a blow-up criterion for solution of 3D fractional Navier-Stokes-Coriolis equations in Lei-Lin-Gevrey spaces

被引:0
|
作者
Sun, Xiaochun [1 ]
Xu, Gaoting [1 ]
Wu, Yulian [1 ]
机构
[1] Northwest Normal Univ, Sch Math & Stat, Lanzhou 730070, Peoples R China
来源
OPEN MATHEMATICS | 2023年 / 21卷 / 01期
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; Coriolis force; existence; blow-up criterion; Lei-Lin-Gevrey spaces; LONG-TIME DECAY; REGULARITY;
D O I
10.1515/math-2023-0170
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we researched the existence of the solution to the fractional Navier-Stokes equations with the Coriolis force under initial data, which belong to the Lei-Lin-Gevrey spaces. Moreover, we showed a blow-up criterion, i.e., when the maximal time of existence T* is finite, we proved that the norm of this same solution, in a specific Lei-Lin-Gevrey space, goes to infinity, as time tends to the maximal time of its existence.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Blow-up of the maximal slution to 3D Boussinesq system in Lei-Lin-Gevrey spaces
    Selmi, Ridha
    Chaabani, Abdelkerim
    Zaabi, Mounia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 2945 - 2952
  • [2] New blow-up criteria for local solutions of the 3D generalized MHD equations in Lei-Lin-Gevrey spaces
    Melo, Wilberclay G. G.
    Rocha, Nata Firmino
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (02) : 757 - 778
  • [3] SOLUTIONS FOR THE NAVIER-STOKES EQUATIONS WITH CRITICAL AND SUBCRITICAL FRACTIONAL DISSIPATION IN LEI-LIN AND LEI-LIN-GEVREY SPACES
    Melo, Wilberclay g.
    Rocha, Nata F.
    Costa, Natielle dos Santos
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (78)
  • [5] On the blow-up criterion of 3D Navier-Stokes equations
    Benameur, Jamel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (02) : 719 - 727
  • [6] On the generalized Magnetohydrodynamics-α equations with fractional dissipation in Lei-Lin and Lei-Lin-Gevrey spaces
    Melo, Wilberclay G.
    de Souza, Manasses
    Rosa Santos, Thyago Souza
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [7] Existence, uniqueness and blow-up of solutions for the 3D Navier–Stokes equations in homogeneous Sobolev–Gevrey spaces
    P. Braz e Silva
    W. G. Melo
    N. F. Rocha
    Computational and Applied Mathematics, 2020, 39
  • [8] Existence, uniqueness and blow-up of solutions for the 3D Navier–Stokes equations in homogeneous Sobolev–Gevrey spaces
    Braz e Silva, P.
    Melo, W.G.
    Rocha, N.F.
    Computational and Applied Mathematics, 2020, 39 (02)
  • [9] Global well-posedness of the 3D generalized MHD equations in Lei-Lin-Gevrey and Lei-Lin spaces
    Melo, Wilberclay G.
    Santos, Thyago Souza Rosa
    Zingano, Paulo R.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06):
  • [10] STUDY OF THE BLOW UP OF THE MAXIMAL SOLUTION TO THE THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SYSTEM IN LEI-LIN-GEVREY SPACES
    Selmi, Ridha
    Benameur, Jamel
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2020, 18 (03): : 421 - 438