A Novel Martensitic-Like Transformation Fe-Based Multi-principal Element Alloy

被引:0
作者
Chen, Junchao [1 ]
Ye, Xicong [1 ]
Zhao, Guangwei [1 ]
Lei, Haofeng [1 ]
Feng, Jiaxing [1 ]
Diao, Zhongheng [1 ]
Fang, Dong [1 ]
Li, Bo [1 ]
机构
[1] China Three Gorges Univ, Yichang, Peoples R China
关键词
compressive properties; heat treatment; microstructure; multi-principal element alloys; HIGH-ENTROPY ALLOYS; VALENCE ELECTRON-CONCENTRATION; MECHANICAL-PROPERTIES; COMPRESSIVE PROPERTIES; SOLID-SOLUTION; WEAR BEHAVIOR; BCC PHASE; MICROSTRUCTURE; FCC; CR;
D O I
10.1007/s11665-023-09103-w
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fe65-xNi25Co5Cr5Alx (x = 0,5,10,15,20,25) multi-principal element alloys (MPEAs) were prepared by vacuum arc melting and heat-treated to systematically study the effects of Al elements and heat treatment on the microstructure and mechanical properties of Fe-based MPEAs. The results showed that with the addition of Al element, the alloy structure changed from FCC structure to FCC + B2 structure and finally to BCC + B2 spinodal structure, and the addition of Al promoted the formation of body-centered cubic structure. After heat treatment, the B2 phase got precipitated out of the FCC matrix of Al10 and Al15 alloys, Al20 alloy underwent a martensitic-like transformation, and Al25 alloy maintained the labyrinthine spinodal structure. A significant enhancement of compressive properties was found in Al20 and Al25 alloys. Among them, Fe45Ni25Co5Cr5Al20 alloy had the best room temperature compressive properties, its yield strength, fracture strength, and fracture strain that were 1292.2, 3145.2 MPa, and 42.2%, respectively, and its fracture strength and fracture strain were 1.9 times and 3.6 times of as-cast state.
引用
收藏
页码:905 / 915
页数:11
相关论文
共 64 条
[1]   Fabrication, Characterization, and Corrosion Behavior of a New Cu40Mn25Al20Fe5Co5Ni5 High-Entropy Alloy in HNO3 Solution [J].
Aly, Hayam A. ;
Abdelghafar, Khaled A. ;
Gaber, Ghalia A. ;
Mohamed, Lamiaa Z. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (02) :1430-1443
[2]  
Bhadeshia HKDH, 2017, STEELS: MICROSTRUCTURE AND PROPERTIES, 4TH EDITION, P101, DOI 10.1016/B978-0-08-100270-4.00004-4
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]   Effects of Fe Content on Microstructures and Properties of AlCoCrFe x Ni High-Entropy Alloys [J].
Chen, Qiushi ;
Zhou, Kaiyao ;
Jiang, Li ;
Lu, Yiping ;
Li, Tingju .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2015, 40 (12) :3657-3663
[5]   Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility [J].
Chen, Ruirun ;
Qin, Gang ;
Zheng, Huiting ;
Wang, Liang ;
Su, Yanqing ;
Chiu, YuLung ;
Ding, Hongsheng ;
Guo, Jingjie ;
Fu, Hengzhi .
ACTA MATERIALIA, 2018, 144 :129-137
[6]   Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J].
Chuang, Ming-Hao ;
Tsai, Ming-Hung ;
Wang, Woei-Ren ;
Lin, Su-Jien ;
Yeh, Jien-Wei .
ACTA MATERIALIA, 2011, 59 (16) :6308-6317
[7]   BROWNIAN MOTION IN SPINODAL DECOMPOSITION [J].
COOK, HE .
ACTA METALLURGICA, 1970, 18 (03) :297-+
[8]   Microstructure and mechanical properties of AlCoxCrFeNi3-x eutectic high-entropy-alloy system [J].
Dong, Yong ;
Yao, Zeqiang ;
Huang, Xuan ;
Du, Fengming ;
Li, Chuanqiang ;
Chen, Anfu ;
Wu, Fei ;
Cheng, Yongqi ;
Zhang, Zhengrong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 823
[9]   Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy [J].
Feng, Rui ;
Rao, You ;
Liu, Chuhao ;
Xie, Xie ;
Yu, Dunji ;
Chen, Yan ;
Ghazisaeidi, Maryam ;
Ungar, Tamas ;
Wang, Huamiao ;
An, Ke ;
Liaw, Peter K. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158