Epitaxial Growth of α-FAPbI3 at a Well-Matched Heterointerface for Efficient Perovskite Solar Cells and Solar Modules

被引:15
作者
Meng, Yuanyuan [1 ]
Wang, Yulong [2 ]
Liu, Chang [1 ]
Yan, Pengyu [1 ]
Sun, Kexuan [1 ]
Wang, Yaohua [1 ]
Tian, Ruijia [1 ]
Cao, Ruikun [1 ]
Zhu, Jintao [3 ]
Do, Hainam [3 ]
Lu, Jianfeng [2 ]
Ge, Ziyi [1 ,4 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Prov Engn Res Ctr Energy Optoelect Mat &, Ningbo 315201, Peoples R China
[2] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
[3] Univ Nottingham Ningbo China, Dept Chem & Environm Engn, Ningbo 315100, Peoples R China
[4] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
2D templated nucleation; perovskite solar cells; preferred crystal orientation; scalable deposition; stability; OPERATIONAL STABILITY; ROOM-TEMPERATURE; CRYSTALLIZATION; DEFECTS;
D O I
10.1002/adma.202309208
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although the FAPbI(3) perovskite system exhibits an impressive optoelectronic characteristic and thermal stability because of its energetically unstable black phase at room temperature, it is considerably challenging to attain a controllable and oriented nucleation of alpha-FAPbI(3). To overcome this challenge, a 2D perovskite with a released inorganic octahedral distortion designed by weakening the hydrogen interactions between the organic interlayer and [PbI6](4-) octahedron is presented in this study. A highly matched heterointerface can be formed between the (002) facet of the 2D structure and the (100) crystal plane of the cubic alpha-FAPbI(3), thereby lowering the crystallization energy and inducing a heterogeneous nucleation of alpha-FAPbI(3). This "epitaxial growth" mechanism results form the highly preferred crystallographic orientation of the (100) facets, improved crystal quality and film uniformity, substantially increased charge transporting characteristics, and suppressed nonradiative recombination losses. An impressive power conversion efficiency (PCE) of 25.4% (certified 25.2%) is achieved using target PSCs, which demonstrates outstanding ambient and operational stability. The feasibility of this strategy is proved for the scalable deposition of homogeneous and high-quality perovskite thin films by demonstrating the remarkably increased PCE of the large-area perovskite solar module, from 18.2% to 20.1%.
引用
收藏
页数:12
相关论文
共 55 条
  • [1] Intrinsic non-radiative voltage losses in fullerene-based organic solar cells
    Benduhn, Johannes
    Tvingstedt, Kristofer
    Piersimoni, Fortunato
    Ullbrich, Sascha
    Fan, Yeli
    Tropiano, Manuel
    McGarry, Kathryn A.
    Zeika, Olaf
    Riede, Moritz K.
    Douglas, Christopher J.
    Barlow, Stephen
    Marder, Seth R.
    Neher, Dieter
    Spoltore, Donato
    Vandewal, Koen
    [J]. NATURE ENERGY, 2017, 2 (06):
  • [2] Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules
    Bu, Tongle
    Li, Jing
    Li, Hengyi
    Tian, Congcong
    Su, Jie
    Tong, Guoqing
    Ono, Luis K.
    Wang, Chao
    Lin, Zhipeng
    Chai, Nianyao
    Zhang, Xiao-Li
    Chang, Jingjing
    Lu, Jianfeng
    Zhong, Jie
    Huang, Wenchao
    Qi, Yabing
    Cheng, Yi-Bing
    Huang, Fuzhi
    [J]. SCIENCE, 2021, 372 (6548) : 1327 - +
  • [3] Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module
    Bu, Tongle
    Li, Jing
    Zheng, Fei
    Chen, Weijian
    Wen, Xiaoming
    Ku, Zhiliang
    Peng, Yong
    Zhong, Jie
    Cheng, Yi-Bing
    Huang, Fuzhi
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [4] Direct and stable α-phase formation via ionic liquid solvation for formamidinium-based perovskite solar cells
    Chao, Lingfeng
    Xia, Yingdong
    Duan, Xiaozheng
    Wang, Yue
    Ran, Chenxin
    Niu, Tingting
    Gu, Lei
    Li, Deli
    Hu, Jianfei
    Gao, Xingyu
    Zhang, Jing
    Chen, Yonghua
    [J]. JOULE, 2022, 6 (09) : 2203 - 2217
  • [5] Crystallization in one-step solution deposition of perovskite films: Upward or downward?
    Chen, Shangshang
    Xiao, Xun
    Chen, Bo
    Kelly, Leah L.
    Zhao, Jingjing
    Lin, Yuze
    Toney, Michael F.
    Huang, Jinsong
    [J]. SCIENCE ADVANCES, 2021, 7 (04):
  • [6] Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells
    Chen, Yihua
    Li, Nengxu
    Wang, Ligang
    Li, Liang
    Xu, Ziqi
    Jiao, Haoyang
    Liu, Pengfei
    Zhu, Cheng
    Zai, Huachao
    Sun, Mingzi
    Zou, Wei
    Zhang, Shuai
    Xing, Guichuan
    Liu, Xinfeng
    Wang, Jianpu
    Li, Dongdong
    Huang, Bolong
    Chen, Qi
    Zhou, Huanping
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [7] Multisource Vacuum Deposition of Methylammonium-Free Perovskite Solar Cells
    Chiang, Yu-Hsien
    Anaya, Miguel
    Stranks, Samuel D.
    [J]. ACS ENERGY LETTERS, 2020, 5 (08): : 2498 - 2504
  • [8] Highly heterogeneous epitaxy of flexoelectric BaTiO3-δ membrane on Ge
    Dai, Liyan
    Zhao, Jinyan
    Li, Jingrui
    Chen, Bohan
    Zhai, Shijie
    Xue, Zhongying
    Di, Zengfeng
    Feng, Boyuan
    Sun, Yanxiao
    Luo, Yunyun
    Ma, Ming
    Zhang, Jie
    Ding, Sunan
    Zhao, Libo
    Jiang, Zhuangde
    Luo, Wenbo
    Quan, Yi
    Schwarzkopf, Jutta
    Schroeder, Thomas
    Ye, Zuo-Guang
    Xie, Ya-Hong
    Ren, Wei
    Niu, Gang
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [9] Multi-cation Synergy Suppresses Phase Segregation in Mixed-Halide Perovskites
    Dang, Hoang X.
    Wang, Kai
    Ghasemi, Masoud
    Tang, Ming-Chun
    De Bastiani, Michele
    Aydin, Erkan
    Dauzon, Emilie
    Barrit, Dounya
    Peng, Jun
    Smilgies, Detlef-M
    De Wolf, Stefaan
    Amassian, Aram
    [J]. JOULE, 2019, 3 (07) : 1746 - 1764
  • [10] Synergistic Crystallization and Passivation by a Single Molecular Additive for High-Performance Perovskite Solar Cells
    Du, Xinyi
    Zhang, Jing
    Su, Hang
    Guo, Xu
    Hu, Yingjie
    Liu, Dongle
    Yuan, Ningyi
    Ding, Jianning
    Gao, Lili
    Liu, Shengzhong
    [J]. ADVANCED MATERIALS, 2022, 34 (33)