Crack-Free Tungsten Fabricated via Laser Powder Bed Fusion Additive Manufacturing

被引:16
作者
Ramakrishnan, Tejas [1 ]
Kumar, Amit [1 ]
Kumar, Tumulu S. [1 ]
Kwon, Sunyong [1 ]
Muniz-Lerma, Jose A. [1 ]
Gauvin, Raynald [1 ]
Brochu, Mathieu [1 ]
机构
[1] McGill Univ, Dept Min & Mat Engn, Wong Bldg,3610 Univ St, Montreal, PQ H3A 0C5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
DFT calculations; grain boundary engineering; laser powder bed fusion; refractory metal; tungsten; CRYSTALLOGRAPHIC TEXTURE; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; GRAIN-BOUNDARIES; PURE TUNGSTEN; MICROSTRUCTURE; NITROGEN; BEHAVIOR; DENSIFICATION; TRANSITION;
D O I
10.1002/adfm.202309304
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Additive manufacturing of tungsten (W) is challenging due to its high melting point, high thermal conductivity, oxidation tendency, and brittleness from grain boundary (GB) oxides. In this study, the processing of W through laser powder bed fusion is investigated. Parts are fabricated under argon (Ar) and nitrogen (N2) atmospheres using the same processing parameters. The part produced in Ar has cracks with oxide precipitates decorating the fractured GBs. On the other hand, crack-free W samples are produced under N2 atmosphere without any additional process modification. In both cases, the oxygen (O) content in the LPBF samples is similar to the starting powder. Interestingly, the analysis of the samples fabricated in nitrogen suggests that nitrogen is retained beyond the equilibrium solid solubility limit, while high-resolution electron micrographs of fractured surfaces reveal reduced levels of oxides at GBs. Increased hardness for samples processed under N2 atmosphere is observed. Density Functional Theory (DFT) calculations performed to study the influence of interstitial nitrogen on oxygen diffusion in W indicated a hindrance to O diffusion from the presence of dissolved N. Additive manufacturing of tungsten (W) is challenging due to its high melting point, and brittleness from GB oxides. In this study, the processing of W through laser powder bed fusion is investigated. Parts are fabricated under argon (Ar) and nitrogen (N2). The part produced in Ar has cracks with oxide precipitates decorating the fractured grain boundaries, while crack-free parts are produced under N2 atmosphere without any additional process modification.image
引用
收藏
页数:12
相关论文
共 80 条
[11]   The effect of hot isostatic pressing on thermal conductivity of additively manufactured pure tungsten [J].
Chen, Jinhan ;
Li, Kailun ;
Wang, Yafei ;
Xing, Leilei ;
Yu, Chenfan ;
Liu, Hailong ;
Ma, Jing ;
Liu, Wei ;
Shen, Zhijian .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2020, 87
[12]   Densification Behavior of 316L Stainless Steel Parts Fabricated by Selective Laser Melting by Variation in Laser Energy Density [J].
Choi, Joon-Phil ;
Shin, Gi-Hun ;
Brochu, Mathieu ;
Kim, Yong-Jin ;
Yang, Sang-Sun ;
Kim, Kyung-Tae ;
Yang, Dong-Yeol ;
Lee, Chang-Woo ;
Yu, Ji-Hun .
MATERIALS TRANSACTIONS, 2016, 57 (11) :1952-1959
[13]  
Chou S-C., 2018, EVALUATION LASER POW
[14]  
Darvish K., 2016, MATER DESIGN, V112, P366
[15]   Effects of heat treatment on microstructure and creep properties of a laser powder bed fused nickel superalloy [J].
Davies, S. J. ;
Jeffs, S. P. ;
Coleman, M. P. ;
Lancaster, R. J. .
MATERIALS & DESIGN, 2018, 159 :39-46
[16]  
Fallis A.., 2013, Journal of Chemical Information and Modeling, V53, P1689
[17]   RECRYSTALLIZATION GRAIN GROWTH AND DUCTILE-BRITTLE TRANSITION IN TUNGSTEN SHEET [J].
FARRELL, K ;
SCHAFFHA.AC ;
STIEGLER, JO .
JOURNAL OF THE LESS-COMMON METALS, 1967, 13 (02) :141-&
[18]   PERMEATION DIFFUSION AND SOLUTION OF NITROGEN IN TUNGSTEN AND MOLYBDENUM [J].
FRAUENFE.R .
JOURNAL OF CHEMICAL PHYSICS, 1968, 48 (09) :3966-&
[19]   Structures and transitions in bcc tungsten grain boundaries and their role in the absorption of point defects [J].
Frolov, Timofey ;
Zhu, Qiang ;
Oppelstrup, Tomas ;
Marian, Jaime ;
Rudd, Robert E. .
ACTA MATERIALIA, 2018, 159 :123-134
[20]   Advanced capabilities for materials modelling with QUANTUM ESPRESSO [J].
Giannozzi, P. ;
Andreussi, O. ;
Brumme, T. ;
Bunau, O. ;
Nardelli, M. Buongiorno ;
Calandra, M. ;
Car, R. ;
Cavazzoni, C. ;
Ceresoli, D. ;
Cococcioni, M. ;
Colonna, N. ;
Carnimeo, I. ;
Dal Corso, A. ;
de Gironcoli, S. ;
Delugas, P. ;
DiStasio, R. A., Jr. ;
Ferretti, A. ;
Floris, A. ;
Fratesi, G. ;
Fugallo, G. ;
Gebauer, R. ;
Gerstmann, U. ;
Giustino, F. ;
Gorni, T. ;
Jia, J. ;
Kawamura, M. ;
Ko, H-Y ;
Kokalj, A. ;
Kucukbenli, E. ;
Lazzeri, M. ;
Marsili, M. ;
Marzari, N. ;
Mauri, F. ;
Nguyen, N. L. ;
Nguyen, H-V ;
Otero-de-la-Roza, A. ;
Paulatto, L. ;
Ponce, S. ;
Rocca, D. ;
Sabatini, R. ;
Santra, B. ;
Schlipf, M. ;
Seitsonen, A. P. ;
Smogunov, A. ;
Timrov, I. ;
Thonhauser, T. ;
Umari, P. ;
Vast, N. ;
Wu, X. ;
Baroni, S. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (46)