共 1 条
COMBINING LIDAR-DERIVED METRICS WITH RGB-NIR IMAGES TO IMPROVE TREE SPECIES CLASSIFICATION IN A TROPICAL URBAN AREA
被引:0
|作者:
Ferreira, Matheus P.
[1
]
dos Santos, Daniel R.
[1
]
Ferrari, Felipe
[2
]
Martins, Gabriela B.
[1
]
Feitosa, Raul Q.
[2
]
机构:
[1] Mil Inst Engn IME, Rio De Janeiro, Brazil
[2] Pontif Catholic Univ Rio Janeiro PUC Rio, Rio De Janeiro, Brazil
来源:
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM
|
2023年
关键词:
Deep learning;
semantic segmentation;
tree species discrimination;
RGB images;
D O I:
10.1109/IGARSS52108.2023.10282421
中图分类号:
P [天文学、地球科学];
学科分类号:
07 ;
摘要:
Accurate information on urban tree species distribution can reveal insights into how street trees provide ecosystem services like mitigating air pollution and cooling surfaces. Here, we used LiDAR-derived structural properties of individual tree crowns (ITCs) and digital aerial images to classify urban tree species. We fused LiDAR features with RGB-NIR digital aerial images using a fully convolutional neural network. The fusion strategy consisted in stacking one LiDAR feature at a time with RGB-NIR bands. The results show that surface normals of tree leaves improve the F1-score of all species, with the highest increase reaching 13.7 percentage points.
引用
收藏
页码:5914 / 5917
页数:4
相关论文