COMBINING LIDAR-DERIVED METRICS WITH RGB-NIR IMAGES TO IMPROVE TREE SPECIES CLASSIFICATION IN A TROPICAL URBAN AREA

被引:0
|
作者
Ferreira, Matheus P. [1 ]
dos Santos, Daniel R. [1 ]
Ferrari, Felipe [2 ]
Martins, Gabriela B. [1 ]
Feitosa, Raul Q. [2 ]
机构
[1] Mil Inst Engn IME, Rio De Janeiro, Brazil
[2] Pontif Catholic Univ Rio Janeiro PUC Rio, Rio De Janeiro, Brazil
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
Deep learning; semantic segmentation; tree species discrimination; RGB images;
D O I
10.1109/IGARSS52108.2023.10282421
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Accurate information on urban tree species distribution can reveal insights into how street trees provide ecosystem services like mitigating air pollution and cooling surfaces. Here, we used LiDAR-derived structural properties of individual tree crowns (ITCs) and digital aerial images to classify urban tree species. We fused LiDAR features with RGB-NIR digital aerial images using a fully convolutional neural network. The fusion strategy consisted in stacking one LiDAR feature at a time with RGB-NIR bands. The results show that surface normals of tree leaves improve the F1-score of all species, with the highest increase reaching 13.7 percentage points.
引用
收藏
页码:5914 / 5917
页数:4
相关论文
共 1 条
  • [1] Improving urban tree species classification by deep-learning based fusion of digital aerial images and LiDAR
    Ferreira, Matheus Pinheiro
    Santos, Daniel Rodrigues dos
    Ferrari, Felipe
    Coelho, Luiz Carlos Teixeira
    Martins, Gabriela Barbosa
    Feitosa, Raul Queiroz
    URBAN FORESTRY & URBAN GREENING, 2024, 94