Federated deep reinforcement learning-based online task offloading and resource allocation in harsh mobile edge computing environment

被引:3
|
作者
Xiang, Hui [1 ]
Zhang, Meiyu [1 ]
Jian, Chengfeng [1 ]
机构
[1] Zhejiang Univ Technol, Comp Sci & Technol Coll, Hangzhou 310023, Peoples R China
来源
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS | 2024年 / 27卷 / 03期
基金
中国国家自然科学基金;
关键词
Task offloading; Federated learning; Harsh mobile edge computing environment; Deep reinforcement learning; Resource allocation;
D O I
10.1007/s10586-023-04143-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the harsh mobile edge computing (HMEC) environment, there are many dynamic changes such as interference from noise, the impact of extreme environmental conditions, and the mobility of devices. It is a great challenge to the online realtime task offloading scheduling for delay-sensitive applications. However, the dynamic changes in HMEC environment have been ignored in almost all previous studies. Therefore, we propose the federated deep reinforcement learning-based online task offloading and resource allocation (FD-OTR) algorithm to address the task offloading in HMEC. Additionally, the FD-OTR algorithm performs resource allocation for offloaded tasks. The task offloading part of FD-OTR algorithm can be divided into two layers: the deep reinforcement learning (DRL) layer and the federated learning (FL) layer. The online algorithm in the DRL layer can adapt to the dynamic HMEC environment and make real-time task offloading decisions. In the FL layer, federated learning with low communication overhead is used for model aggregation to form a better global model. Resource allocation is done by using a new meta-heuristic algorithm: the Sparrow Search Algorithm (SSA). Finally, the simulation results demonstrate that the FD-OTR algorithm performs well in HMEC. The convergence speed of FD-OTR is three times faster than the centralized method. Compared to the baseline algorithms, FD-OTR reduces costs by 14.3%, 11.2% and 9.28%, respectively.
引用
收藏
页码:3323 / 3339
页数:17
相关论文
empty
未找到相关数据