GENERALIZED HYPERBOLIC GEOMETRIC FLOW

被引:0
作者
Azami, Shahroud [1 ]
Ramandi, Ghodratallah Fasihi [1 ]
Pirhadi, Vahid [2 ]
机构
[1] Imam Khomeni Int Univ, Fac Sci, Dept Pure Math, Qazvin, Iran
[2] Univ Kashan, Dept Pure Math, Fac Math, Kashan, Iran
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2023年 / 38卷 / 02期
关键词
Hyperbolic geometric flow; quasilinear hyperbolic equation; strict hyperbolicity; RICCI FLOW;
D O I
10.4134/CKMS.c220112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we consider a kind of generalized hyper-bolic geometric flow which has a gradient form. Firstly, we establish the existence and uniqueness for the solution of this flow on an n-dimensional closed Riemannian manifold. Then, we give the evolution of some geo-metric structures of the manifold along this flow.
引用
收藏
页码:575 / 588
页数:14
相关论文
共 13 条
  • [1] Hyperbolic Ricci-Bourguignon flow
    Azami, Shahroud
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (02): : 399 - 409
  • [3] Azami S, 2017, ELECTRON J DIFFER EQ
  • [4] Bourguignon J.P., 1981, LECT NOTES MATH, V838, P42
  • [5] THE RICCI-BOURGUIGNON FLOW
    Catino, Giovanni
    Cremaschi, Laura
    Djadli, Zindine
    Mantegazza, Carlo
    Mazzieri, Lorenzo
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2017, 287 (02) : 337 - 370
  • [6] Chow B., 2004, Am. Math. Soc.
  • [7] Dai WR, 2010, PURE APPL MATH Q, V6, P331
  • [8] DETURCK DM, 1983, J DIFFER GEOM, V18, P157
  • [9] HAMILTON RS, 1982, J DIFFER GEOM, V17, P255
  • [10] Wave character of metrics and hyperbolic geometric flow
    Kong, De-Xing
    Liu, Kefeng
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (10)