Solitary Wave Solutions to a Generalization of the mKdV Equation

被引:1
|
作者
Omel'yanov, G. [1 ]
Rodriguez, J. Noyola [2 ]
机构
[1] Univ Sonora, Rosales & Encinas, Hermosillo 83000, Sonora, Mexico
[2] Univ Autonoma Guerrero, Carlos E Adame 54, Acapulco De Juarez 39650, Guerrero, Mexico
关键词
DEGASPERIS-PROCESI EQUATION; LOW-REGULARITY SOLUTIONS; WATER;
D O I
10.1134/S1061920823020103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a generalization of the mKdV equation which contains dissipation terms similar to those contained in both the Benjamin-Bona-Mahoney equation and the famous Camassa-Holm and Degasperis-Procesi equations. Our objective is the construction of classical (solitons) and non-classical (peakons and cuspons) solitary wave solutions of this equation.
引用
收藏
页码:246 / 256
页数:11
相关论文
共 50 条
  • [31] A New Type of Solitary Wave Solution of the mKdV Equation Under Singular Perturbations
    Zhang, Lijun
    Han, Maoan
    Zhang, Mingji
    Khalique, Chaudry Masood
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (11):
  • [33] More Exact Traveling Wave Solutions for Compound KdV Equation and MKdV Equation
    Cao, DongBo
    Pan, LiuXian
    Yan, JiaRen
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 3642 - +
  • [34] Lie symmetries, solitary wave solutions, and conservation laws of coupled KdV-mKdV equation for internal gravity waves
    Kumar, Mukesh
    Anand, Sushmita
    Tanwar, Dig Vijay
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (08) : 6909 - 6927
  • [35] Solitary wave solutions and kink wave solutions for a generalized PC equation
    Zhang W.-L.
    Acta Mathematicae Applicatae Sinica, 2005, 21 (1) : 125 - 134
  • [36] New sets of solitary wave solutions to the KdV, mKdV, and the generalized KdV equations
    Wazwaz, Abdul-Majid
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (02) : 331 - 339
  • [37] Solitary wave solutions for a coupled MKdV system using the homotopy perturbation method
    Jiang, Yong-Qing
    Zhu, Jia-Min
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2008, 31 (02) : 359 - 367
  • [38] Solitary Wave Solutions of a Hyperelastic Dispersive Equation
    Jiang, Yuheng
    Tian, Yu
    Qi, Yao
    MATHEMATICS, 2024, 12 (04)
  • [39] New solutions to mKdV equation
    Fu, ZT
    Liu, SD
    Liu, SK
    PHYSICS LETTERS A, 2004, 326 (5-6) : 364 - 374
  • [40] Solitary Wave Solutions of the coupled Kawahara Equation
    Bharatha, K.
    Rangarajan, R.
    Neethu, C. J.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS SERIES, 2025, 117 (01): : 63 - 70