Fermi polaron fine structure in strained van der Waals heterostructures

被引:6
|
作者
Iakovlev, Z. A. [1 ]
Glazov, M. M. [1 ]
机构
[1] Ioffe Inst, St Petersburg 194021, Russia
关键词
2D semiconductors; transition metal dichalcogenides; strain; fine structure splitting; exciton; trion; Fermi polaron; GROUND-STATE ENERGY; CHARGED EXCITONS; MONOLAYER MOS2; TRIONS; MOIRE; ELECTRONS; GAS;
D O I
10.1088/2053-1583/acdd81
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The fine structure of attractive Fermi polarons in van der Waals heterostructures based on monolayer transition metal dichalcogenides in the presence of elastic strain is studied theoretically. The charged excitons (trions), three particle bound states of two electrons and a hole or two holes and an electron, do not show any strain-induced fine structure splitting compared to neutral excitons whose radiative doublet is split by the strain into linearly polarized components. The correlation of the trions with Fermi sea holes gives rise to attractive Fermi polarons. We show that this results in a fine structure splitting of the polaron into states polarized along the main axes of the strain tensor. This effect is related to the bosonic statistics of Fermi polarons. We develop a microscopic theory of the effect and calculate the strain-induced splitting of Fermi polarons for both tungsten- and molybdenum-based monolayers, identifying the role of inter- and intravalley exciton-electron interactions. The fine structure splitting of the attractive Fermi polaron is proportional to both the excitonic splitting and the Fermi energy. The Fermi polaron fine structure in bilayers is briefly analyzed, and the role of electron and trion localization in moire potentials is discussed.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Ultrafast dynamics in van der Waals heterostructures
    Jin, Chenhao
    Ma, Eric Yue
    Karni, Ouri
    Regan, Emma C.
    Wang, Feng
    Heinz, Tony F.
    NATURE NANOTECHNOLOGY, 2018, 13 (11) : 994 - 1003
  • [22] Quantum microscopy with van der Waals heterostructures
    A. J. Healey
    S. C. Scholten
    T. Yang
    J. A. Scott
    G. J. Abrahams
    I. O. Robertson
    X. F. Hou
    Y. F. Guo
    S. Rahman
    Y. Lu
    M. Kianinia
    I. Aharonovich
    J.-P. Tetienne
    Nature Physics, 2023, 19 : 87 - 91
  • [23] Thermal response in van der Waals heterostructures
    Gandi, Appala Naidu
    Alshareef, Husam N.
    Schwingenschlogl, Udo
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (03)
  • [24] Multiferroicity in atomic van der Waals heterostructures
    Cheng Gong
    Eun Mi Kim
    Yuan Wang
    Geunsik Lee
    Xiang Zhang
    Nature Communications, 10
  • [25] Picosecond photoresponse in van der Waals heterostructures
    Massicotte, M.
    Schmidt, P.
    Vialla, F.
    Schaedler, K. G.
    Reserbat-Plantey, A.
    Watanabe, K.
    Taniguchi, T.
    Tielrooij, K. J.
    Koppens, F. H. L.
    NATURE NANOTECHNOLOGY, 2016, 11 (01) : 42 - +
  • [26] Devices and applications of van der Waals heterostructures
    Chao Li
    Peng Zhou
    David Wei Zhang
    Journal of Semiconductors, 2017, 38 (03) : 48 - 56
  • [27] Strain engineering of van der Waals heterostructures
    Vermeulen, Paul A.
    Mulder, Jefta
    Momand, Jamo
    Kooi, Bart J.
    NANOSCALE, 2018, 10 (03) : 1474 - 1480
  • [28] The Coulomb interaction in van der Waals heterostructures
    Le Huang
    MianZeng Zhong
    HuiXiong Deng
    Bo Li
    ZhongMing Wei
    JingBo Li
    SuHuai Wei
    Science China Physics, Mechanics & Astronomy, 2019, 62
  • [29] Dielectric Genome of van der Waals Heterostructures
    Andersen, Kirsten
    Latini, Simone
    Thygesen, Kristian S.
    NANO LETTERS, 2015, 15 (07) : 4616 - 4621
  • [30] Exciton landscape in van der Waals heterostructures
    Hagel, Joakim
    Brem, Samuel
    Linderalv, Christopher
    Erhart, Paul
    Malic, Ermin
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):