MAX phases Hf2(SexS1_ x)C (x=0-1) and their thermal expansion behaviors

被引:7
|
作者
Wang, Xudong [1 ,2 ]
Chen, Ke [2 ,3 ]
Li, Ziqian [2 ,4 ]
Ding, Haoming [2 ,4 ]
Song, Yujie [2 ,3 ]
Du, Shiyu [2 ,3 ]
Chai, Zhifang [2 ,3 ]
Gu, Hui [1 ]
Huang, Qing [2 ,3 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Engn Lab Adv Energy Mat, Ningbo 315201, Peoples R China
[3] Qianwan Inst CNiTECH, Ningbo 315336, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
MAX phase; Chalcogen element; Thermal expansion; COATINGS; DEPOSITION; ZR2SEC; TI2ALC; TI;
D O I
10.1016/j.jeurceramsoc.2022.12.026
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Herein, a series of chalcogen-containing MAX phases, Hf2(SexS1_x)C, were successfully synthesized, whose lattice parameter change follows the Vegard's law. The average coefficient of thermal expansion (CTE) can be continuously tuned from 7.59 mu K_ 1 to 9.93 mu K_ 1 when the occupancy rate x of Se changes from 0 to 1. The substitution of Se for S effectively soften the crystal structures that is reflected by long average M-A bond in Sealloying Hf2(SexS1_x)C. However, the CTEs along a and c axes in all Hf2(SexS1_ x)C MAX phases are almost same which may be find application in thermal barrier coating (TBC) that isotropic volume change is highly demanding.
引用
收藏
页码:1874 / 1879
页数:6
相关论文
共 50 条
  • [21] Transport properties of ceria-zirconia-yttria solid solutions {(CeO2)x(ZrO2)1-x}1-y(YO1.5)y (x=0-1, y=0.2, 0.35)
    Sakai, N
    Xiong, YP
    Yamaji, K
    Kishimoto, H
    Horita, T
    Brito, ME
    Yokokawa, H
    JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 408 : 503 - 506
  • [22] Thermal Expansion and Thermal Conductivity of (In2S3)x(AgIn5S8)1-x Alloys
    Bodnar, I. V.
    Feshchenko, A. A.
    Khoroshko, V. V.
    SEMICONDUCTORS, 2021, 55 (02) : 133 - 136
  • [23] Lattice thermal expansion studies of Th1-xNdxO2-x/2 solid solutions
    Mathews, M. D.
    Ambekar, B. R.
    Tyagi, A. K.
    CERAMICS INTERNATIONAL, 2006, 32 (06) : 609 - 612
  • [24] Microstructure and mechanical properties of (Cr x Ti 1-x ) 2 AlC 211 MAX phases as composites through spark plasma sintering
    Hemati, Leila
    Farvizi, Mohammad
    Ataie, Sayed Alireza
    Nikzad, Leila
    Ghasali, Ehsan
    Faraji, Arash
    Liskiewicz, Tomasz
    CERAMICS INTERNATIONAL, 2024, 50 (16) : 27806 - 27822
  • [25] Thermal Conductivity and Expansion Coefficient of (Sm1-x Yb x )2Ce2O7 Ceramics for Thermal Barrier Coatings
    Chen Xiaoge
    Zhang Hongsong
    Sun Kun
    Dang Xudan
    Zhang Haoming
    Ren Bo
    Tang An
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (12) : 6193 - 6197
  • [26] Correlation between the thermal expansion, isothermal compressibility, and photoconductivity of the (TlGaSe2)1 − x(TlInS2)x (x = 0.1, 0.2) solid solutions
    M. M. Kurbanov
    M. M. Gojaev
    S. D. Mamedov
    A. B. Magerramov
    E. G. Mamedov
    Inorganic Materials, 2012, 48 : 773 - 775
  • [27] Order/disorder in YbNi1±XGa2∓X (x ≤ 0.08): Crystal structure, thermal expansion and magnetic properties
    Vasylechko, L.
    Burkhardt, U.
    Schnelle, W.
    Borrmann, H.
    Haarmann, F.
    Senyshyn, A.
    Trots, D.
    Hiebl, K.
    Grin, Yu.
    SOLID STATE SCIENCES, 2012, 14 (06) : 746 - 760
  • [28] Correlation between the thermal expansion, isothermal compressibility, and photoconductivity of the (TlGaSe2)1-x(TlInS2)x (x=0.1, 0.2) solid solutions
    Kurbanov, M. M.
    Gojaev, M. M.
    Mamedov, S. D.
    Magerramov, A. B.
    Mamedov, E. G.
    INORGANIC MATERIALS, 2012, 48 (08) : 773 - 775
  • [29] Thermal expansion, T - x phase diagram and polarization of (1-x)Na1/2Bi1/2TiO3-xBaTiO3 solid solutions
    Gorev, M. V.
    Flerov, I. N.
    Molokeev, M. S.
    Bormanis, K.
    Birks, E.
    Sapozhnikov, S. V.
    Mikhaleva, E. A.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (15)
  • [30] Temperature dependences of optical indicatrix and thermal expansion parameters of TlIn(S1-xSex)2 solid solutions (x=0, 0.02 and 0.06)
    Say, A.
    Martynyuk-Lototska, I
    Mys, O.
    Adamenko, D.
    Kostyrko, M.
    Gomonnai, O.
    Vlokh, R.
    UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2020, 21 (02) : 57 - 64