Anchor-free Proposal Generation Network for Efficient Object Detection

被引:0
作者
Nguyen, Hoanh [1 ]
机构
[1] Ind Univ Ho Chi Minh City, Fac Elect Engn Technol, Ho Chi Minh City, Vietnam
关键词
-Object detection; deep learning; convolutional neural network; proposal generation network;
D O I
10.14569/IJACSA.2023.0140437
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
learning object detection methods are usually based on anchor-free or anchor-based scheme for extracting object proposals and one-stage or two-stage structure for producing final predictions. As each scheme or structure has its own strength and weakness, combining their strength in a unified framework is an interesting research topic. However, this topic has not attracted much attention in recent years. This paper presents a two-stage object detection method that utilizes an anchor-free scheme for generating object proposals in the initial stage. For proposal generation, this paper employs an efficient anchor-free network for predicting object corners and assigns object proposals based on detected corners. For object prediction, an efficient detection network is designed to enhance both detection accuracy and speed. The detection network includes a lightweight binary classification subnetwork for removing most false positive object candidates and a light-head detection subnetwork for generating final predictions. Experimental results on the MS-COCO dataset demonstrate that the proposed method outperforms both anchor-free and two -stage object detection baselines in terms of detection performance.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 50 条
  • [41] Predictive Distillation Method of Anchor-Free Object Detection Model for Continual Learning
    Gang, Sumyung
    Chung, Daewon
    Lee, Joonjae
    APPLIED SCIENCES-BASEL, 2022, 12 (13):
  • [42] Anchor-Free Object Detection with Scale-Aware Networks for Autonomous Driving
    Piao, Zhengquan
    Wang, Junbo
    Tang, Linbo
    Zhao, Baojun
    Zhou, Shichao
    ELECTRONICS, 2022, 11 (20)
  • [43] AFRNet: Anchor-Free Object Detection Using Roadside LiDAR in Urban Scenes
    Wang, Luyang
    Lan, Jinhui
    Li, Min
    REMOTE SENSING, 2024, 16 (05)
  • [44] A Feature-Enhanced Anchor-Free Network for UAV Vehicle Detection
    Yang, Jianxiu
    Xie, Xuemei
    Shi, Guangming
    Yang, Wenzhe
    REMOTE SENSING, 2020, 12 (17)
  • [45] Anchor-free network with guided attention for ship detection in aerial imagery
    Zhang, Sihan
    Xin, Ming
    Wang, Xile
    Zhang, Miaohui
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (02)
  • [46] An Anchor-Free Pipeline MFL Image Detection Method
    Han, Fucheng
    Lang, Xianming
    Liu, Mingyang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [47] Anchor-Free Feature Aggregation Network for Instrument Detection in Endoscopic Surgery
    Ding, Guanzhi
    Zhao, Xiushun
    Peng, Cai
    Li, Li
    Guo, Jing
    Li, Depei
    Jiang, Xiaobing
    IEEE ACCESS, 2023, 11 : 29464 - 29473
  • [48] SRAF-Net: A Scene-Relevant Anchor-Free Object Detection Network in Remote Sensing Images
    Liu, Junmin
    Li, Shijie
    Zhou, Changsheng
    Cao, Xiangyong
    Gao, Yong
    Wang, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [49] Probability-Enhanced Anchor-Free Detector for Remote-Sensing Object Detection
    Fan, Chengcheng
    Fang, Zhiruo
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (03): : 4925 - 4943
  • [50] FII-CenterNet: An Anchor-Free Detector With Foreground Attention for Traffic Object Detection
    Fan, Siqi
    Zhu, Fenghua
    Chen, Shichao
    Zhang, Hui
    Tian, Bin
    Lv, Yisheng
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (01) : 121 - 132