High Performance Inverted RbCsFAPbI3 Perovskite Solar Cells Based on Interface Engineering and Defects Passivation

被引:29
|
作者
Imran, Tahir [1 ]
Raza, Hasan [1 ]
Aziz, Liaquat [1 ]
Chen, Rui [1 ]
Liu, Sanwan [1 ]
Jiang, Zhaoyi [1 ]
You, Gao [1 ]
Wang, Jianan [1 ]
Younis, Muhammad [2 ]
Rauf, Sajid [3 ]
Liu, Zonghao [1 ,4 ]
Chen, Wei [1 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Luoyu Rd 1037, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Ctr Joining & Elect Packing, State Key Lab Mat Sci & Engn, Wuhan 430074, Peoples R China
[3] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518000, Guangdong, Peoples R China
[4] Opt Valley Lab Hubei, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
additive engineering; bi-layer hole transport layers; defect passivation; formamidinium-cesium perovskite; inverted perovskite solar cells; OPEN-CIRCUIT VOLTAGE; HIGH-EFFICIENCY; HALIDE PEROVSKITES; RUBIDIUM; PHASE; GUANIDINIUM; CATIONS; LIFETIME; CHLORIDE; BANDGAP;
D O I
10.1002/smll.202207950
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lead halide-based perovskites solar cells (PSCs) are intriguing candidates for photovoltaic technology due to their high efficiency, low cost, and simple fabrication processes. Currently, PSCs with efficiencies of >25% are mainly based on methylammonium (MA)-free and bromide (Br) free, formamide lead iodide (FAPbI3)-based perovskites, because MA is thermally instable due to its volatile nature and Br incorporation will induce blue shift in the absorption spectrum. Therefore, MA-free, Br-free formamidine-based perovskites are drawing huge research attention in recent years. The hole transporting layer (HTL) is crucial in fabricating highly efficient and stable inverted p-i-n structured PSCs by enhancing charge extraction, lowering interfacial recombination, and altering band alignment, etc. Here, this work employs a NiOx/PTAA bi-layer HTL combined with GuHCl (guanidinium hydrochloride) additive engineering and PEAI (phenylethylammonium iodide) passivation strategy to optimize the charge carrier dynamics and tune defects chemistry in the MA-free, Br-free RbCsFAPbI3-based perovskite absorber, which boosts the device efficiency up to 22.78%. Additionally, the device retains 95% of its initial performance under continuous 1 sun equivalent LED light illumination at 45 degrees C for up to 500 h.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Buried interface defects passivation of perovskite film by choline halide for high performance inverted perovskite solar cells with efficiency exceeding 22%
    Sun, Qing
    Meng, Xiangxin
    Deng, Jianguo
    Shen, Bo
    Hu, Die
    Kang, Bonan
    Silva, S. Ravi P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 959
  • [2] Interface engineering utilizing bifunctional metformin for high performance inverted perovskite solar cells
    Wu, Yan
    Han, Meidouxue
    Wang, Ya
    Hou, Minna
    Huang, Qian
    Li, Yuelong
    Ding, Yi
    Luo, Jingshan
    Hou, Guofu
    Zhao, Ying
    Zhang, Xiaodan
    ORGANIC ELECTRONICS, 2022, 106
  • [3] Interface engineering utilizing bifunctional metformin for high performance inverted perovskite solar cells
    Wu, Yan
    Han, Meidouxue
    Wang, Ya
    Hou, Minna
    Huang, Qian
    Li, Yuelong
    Ding, Yi
    Luo, Jingshan
    Hou, Guofu
    Zhao, Ying
    Zhang, Xiaodan
    ORGANIC ELECTRONICS, 2022, 106
  • [4] Interface Passivation of Inverted Perovskite Solar Cells by Dye Molecules
    Qi, Yifang
    Ndaleh, David
    Meador, William E.
    Delcamp, Jared H.
    Hill, Glake
    Pradhan, Nihar Ranjan
    Dai, Qilin
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (09) : 9525 - 9533
  • [5] Bottom interface passivation with benzylamine thiocyanate for improving the performance of inverted perovskite solar cells
    Duan, Chengyi
    Zhao, Minglin
    El-Bashar, Ramy
    Obayya, S. S. A.
    Hameed, Mohammed
    Dai, Jun
    SOLID-STATE ELECTRONICS, 2023, 210
  • [6] Interface passivation engineering for hybrid perovskite solar cells
    Shen, Wenjian
    Dong, Yao
    Huang, Fuzhi
    Cheng, Yi-Bing
    Zhong, Jie
    MATERIALS REPORTS: ENERGY, 2021, 1 (04):
  • [7] Interface Passivation of a Pyridine-Based Bifunctional Molecule for Inverted Perovskite Solar Cells
    Ye, Shi-Qi
    Yin, Zheng-Chun
    Lin, Hao-Sheng
    Wang, Wei-Feng
    Li, Mingjie
    Liu, Yuanyuan
    Lei, Yu-Xuan
    Liu, Wen-Rui
    Yang, Shangfeng
    Wang, Guan-Wu
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (23) : 30534 - 30544
  • [8] The role of TCNQ for surface and interface passivation in inverted perovskite solar cells
    Abicho, Samuel
    Hailegnaw, Bekele
    Mayr, Felix
    Cobet, Munise
    Yumusak, Cigdem
    Sergawi, Asefa
    Yohannes, Teketel
    Kaltenbrunner, Martin
    Scharber, Markus Clark
    Workneh, Getachew Adam
    MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY, 2025, 14 (01)
  • [9] Nature of defects and their passivation engineering for advancements in perovskite solar cells
    Seshaiah, Katta Venkata
    Kim, Joo Hyun
    CHEMICAL ENGINEERING JOURNAL, 2024, 492
  • [10] Defects engineering for high-performance perovskite solar cells
    Feng Wang
    Sai Bai
    Wolfgang Tress
    Anders Hagfeldt
    Feng Gao
    npj Flexible Electronics, 2