Detection and Classification of Fruit Tree Leaf Disease Using Deep Learning

被引:0
|
作者
Nalini, C. [1 ]
Kayalvizhi, N. [1 ]
Keerthana, V [1 ]
Balaji, R. [1 ]
机构
[1] Kongu Engn Coll, Dept Informat Technol, Perundurai, India
来源
PROCEEDINGS OF THIRD DOCTORAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE, DOSCI 2022 | 2023年 / 479卷
关键词
Deep learning; EfficientNet; CNN; AlexNet; Xception; ResNet-50; Inception V3;
D O I
10.1007/978-981-19-3148-2_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Plant disease identification is extremely important in agriculture since it is critical for boosting crop output. Visual plant disease analysis is a modern technique to handle this problem, following recent developments in imaging. In this study, we look at the challenge of plant disease detection which is visually done for identification of plant disease. Plant disease images, in comparison with other types of photographic images, are likely to have randomly dispersed lesions, varied symptoms, and complex backgrounds, making discriminative information difficult to capture. To facilitate plant disease recognition research, we had taken the Plant Village dataset with 13,347 images with 14 classes. Models were trained using the Plant Village dataset. The performance of EfficientNet architecture for classifying the plant leaf disease was compared against ResNet-50, Inception V3, AlexNet, and Xception deep learning algorithms in this analysis. The outcomes of the test dataset revealed that B3 models of the EfficientNet architecture had the greatest accuracy of 99.90 percent when related to other deep learning algorithm in the dataset.
引用
收藏
页码:347 / 356
页数:10
相关论文
共 50 条
  • [1] Fungi affected fruit leaf disease classification using deep CNN architecture
    Gaikwad S.S.
    Rumma S.S.
    Hangarge M.
    International Journal of Information Technology, 2022, 14 (7) : 3815 - 3824
  • [2] Integrating advanced deep learning techniques for enhanced detection and classification of citrus leaf and fruit diseases
    Archna Goyal
    Kamlesh Lakhwani
    Scientific Reports, 15 (1)
  • [3] Detection and Classification of Banana Leaf diseases using Machine Learning and Deep Learning Algorithms
    Vidhya, N. P.
    Priya, R.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [4] Plant leaf disease classification and damage detection system using deep learning models
    B. Sai Reddy
    S. Neeraja
    Multimedia Tools and Applications, 2022, 81 : 24021 - 24040
  • [5] Plant leaf disease classification and damage detection system using deep learning models
    Reddy, B. Sai
    Neeraja, S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (17) : 24021 - 24040
  • [6] Cassava Leaf Disease Detection Using Deep Learning
    Manick
    Srivastava, Jyoti
    2022 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2022, : 379 - 386
  • [7] Automatic and Reliable Leaf Disease Detection Using Deep Learning Techniques
    Chowdhury, Muhammad E. H.
    Rahman, Tawsifur
    Khandakar, Amith
    Ayari, Mohamed Arselene
    Khan, Aftab Ullah
    Khan, Muhammad Salman
    Al-Emadi, Nasser
    Reaz, Mamun Bin Ibne
    Islam, Mohammad Tariqul
    Ali, Sawal Hamid Md
    AGRIENGINEERING, 2021, 3 (02): : 294 - 312
  • [8] Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms
    Ozguven, Mehmet Metin
    Adem, Kemal
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 535
  • [9] Deep Learning Methods for Tree Detection and Classification
    Zhang, Yang
    Wang, Yizhen
    Tang, Zhicheng
    Zhai, Zhenduo
    Shang, Yi
    Viegut, Reid
    2022 IEEE 4TH INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE, COGMI, 2022, : 148 - 155
  • [10] Multi-Crop Leaf Disease Detection using Deep Learning Methods
    Kashyap, Shristy
    Thaware, Tavisha
    Sahu, Shubham Raj
    Rao, Mallikharjuna K.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,